The following are essentially all 2 × 2 matrices that have both integer entries and integer eigenvalues that are also non-symmetric and invertible. No lower-triangular nor upper-triangular matrices are listed, as the eigenvalues of these are obvious. All other cases are listed up to multiplication by -1, so the complementary matrix may be found by multiplying a listed matrix by -1, in which case, the corresponding complementary eigenvalues are the corresponding eigenvalues negated. They are grouped based on the maximum integer in absolute value in the matrix. The eigenvalues are sorted, so if you want an invertible matrix that has three repeated eigenvalues, you can search for, for example, "1, 1, 1".
Parentheses are used to identify eigenvalues that do not have corresponding eigenvectors; that is, it identifies matrices that are defective. Of course, all 2 × 2 matrices that are not symmetric with two equal eigenvalues must be defective.
Also availble are 2 × 2 matrices that are symmetric or invertible or both. While the matrices are in the Matlab format, some of these have been tested in Maple to ensure that they are not the result of numeric error.
Please note, these do not contain upper- or lower-triangular matrices.
There are no invertible 2 × 2 non-symetric matrices that have entries being only 0, 1 or -1 and have real integer eigenvalues that are also not either lower- or upper-triangular.
These are all such matrices up to multiplication by -1, in which case, the eigenvalues are also negated.
| Eigenvalues | Matrix |
|---|---|
| -1, (-1) | [0 1; -1 -2] |
| 1, (1) | [0 1; -1 2] |
| -2, 1 | [0 1; 2 -1] |
| -1, 2 | [0 1; 2 1] |
| -2, 1 | [0 2; 1 -1] |
| -1, 2 | [0 2; 1 1] |
| -1, 2 | [1 -2; -1 0] |
| -1, 2 | [1 -1; -2 0] |
| -1, 2 | [1 1; 2 0] |
| -1, 2 | [1 2; 1 0] |
| 1, (1) | [2 -1; 1 0] |
| 1, (1) | [2 1; -1 0] |
These are all such matrices up to multiplication by -1, in which case, the eigenvalues are also negated.
| Eigenvalues | Matrix |
|---|---|
| -2, -1 | [0 1; -2 -3] |
| 1, 2 | [0 1; -2 3] |
| -3, 1 | [0 1; 3 -2] |
| -1, 3 | [0 1; 3 2] |
| -2, -1 | [0 2; -1 -3] |
| 1, 2 | [0 2; -1 3] |
| -3, 2 | [0 2; 3 -1] |
| -2, 3 | [0 2; 3 1] |
| -3, 1 | [0 3; 1 -2] |
| -1, 3 | [0 3; 1 2] |
| -3, 2 | [0 3; 2 -1] |
| -2, 3 | [0 3; 2 1] |
| -2, 3 | [1 -3; -2 0] |
| -1, 4 | [1 -3; -2 2] |
| -2, 2 | [1 -3; -1 -1] |
| -2, 3 | [1 -2; -3 0] |
| -1, 4 | [1 -2; -3 2] |
| -1, (-1) | [1 -2; 2 -3] |
| -2, 2 | [1 -1; -3 -1] |
| 2, (2) | [1 -1; 1 3] |
| 2, (2) | [1 1; -1 3] |
| -2, 2 | [1 1; 3 -1] |
| -1, (-1) | [1 2; -2 -3] |
| -2, 3 | [1 2; 3 0] |
| -1, 4 | [1 2; 3 2] |
| -2, 2 | [1 3; 1 -1] |
| -2, 3 | [1 3; 2 0] |
| -1, 4 | [1 3; 2 2] |
| -4, 3 | [2 -3; -2 -3] |
| -1, 4 | [2 -3; -2 1] |
| -1, 3 | [2 -3; -1 0] |
| -1, 1 | [2 -3; 1 -2] |
| -4, 3 | [2 -2; -3 -3] |
| -1, 4 | [2 -2; -3 1] |
| 1, 4 | [2 -2; -1 3] |
| -2, 1 | [2 -2; 2 -3] |
| -1, 3 | [2 -1; -3 0] |
| 1, 4 | [2 -1; -2 3] |
| -1, 1 | [2 -1; 3 -2] |
| -1, 1 | [2 1; -3 -2] |
| 1, 4 | [2 1; 2 3] |
| -1, 3 | [2 1; 3 0] |
| -2, 1 | [2 2; -2 -3] |
| 1, 4 | [2 2; 1 3] |
| -4, 3 | [2 2; 3 -3] |
| -1, 4 | [2 2; 3 1] |
| -1, 1 | [2 3; -1 -2] |
| -1, 3 | [2 3; 1 0] |
| -4, 3 | [2 3; 2 -3] |
| -1, 4 | [2 3; 2 1] |
| -3, 4 | [3 -3; -2 -2] |
| -3, 4 | [3 -2; -3 -2] |
| 1, 4 | [3 -2; -1 2] |
| 1, 2 | [3 -2; 1 0] |
| -1, 2 | [3 -2; 2 -2] |
| 1, (1) | [3 -2; 2 -1] |
| 1, 4 | [3 -1; -2 2] |
| 2, (2) | [3 -1; 1 1] |
| 1, 2 | [3 -1; 2 0] |
| 1, 2 | [3 1; -2 0] |
| 2, (2) | [3 1; -1 1] |
| 1, 4 | [3 1; 2 2] |
| -1, 2 | [3 2; -2 -2] |
| 1, (1) | [3 2; -2 -1] |
| 1, 2 | [3 2; -1 0] |
| 1, 4 | [3 2; 1 2] |
| -3, 4 | [3 2; 3 -2] |
| -3, 4 | [3 3; 2 -2] |
These are all such matrices up to multiplication by -1, in which case, the eigenvalues are also negated. This list also excludes integer multiples of matrices already listed above.
| Eigenvalues | Matrix |
|---|---|
| -2, (-2) | [ 0 1; -4 -4] |
| 2, (2) | [ 0 1; -4 4] |
| -3, -1 | [ 0 1; -3 -4] |
| 1, 3 | [ 0 1; -3 4] |
| -4, 1 | [ 0 1; 4 -3] |
| -2, 2 | [ 0 1; 4 0] |
| -1, 4 | [ 0 1; 4 3] |
| 2, (2) | [ 0 2; -2 4] |
| -2, 4 | [ 0 2; 4 2] |
| -3, -1 | [ 0 3; -1 -4] |
| 1, 3 | [ 0 3; -1 4] |
| -6, 2 | [ 0 3; 4 -4] |
| -4, 3 | [ 0 3; 4 -1] |
| -3, 4 | [ 0 3; 4 1] |
| -2, 6 | [ 0 3; 4 4] |
| -2, (-2) | [ 0 4; -1 -4] |
| 2, (2) | [ 0 4; -1 4] |
| -4, 1 | [ 0 4; 1 -3] |
| -2, 2 | [ 0 4; 1 0] |
| -1, 4 | [ 0 4; 1 3] |
| -2, 4 | [ 0 4; 2 2] |
| -6, 2 | [ 0 4; 3 -4] |
| -4, 3 | [ 0 4; 3 -1] |
| -3, 4 | [ 0 4; 3 1] |
| -2, 6 | [ 0 4; 3 4] |
| -5, 3 | [ 1 -4; -3 -3] |
| -3, 4 | [ 1 -4; -3 0] |
| -2, 5 | [ 1 -4; -3 2] |
| -3, 3 | [ 1 -4; -2 -1] |
| -1, 5 | [ 1 -4; -2 3] |
| -3, 2 | [ 1 -4; -1 -2] |
| -1, 3 | [ 1 -4; -1 1] |
| -1, (-1) | [ 1 -4; 1 -3] |
| -5, 3 | [ 1 -3; -4 -3] |
| -3, 4 | [ 1 -3; -4 0] |
| -2, 5 | [ 1 -3; -4 2] |
| -5, 2 | [ 1 -3; -2 -4] |
| -2, -1 | [ 1 -3; 2 -4] |
| -3, 3 | [ 1 -2; -4 -1] |
| -1, 5 | [ 1 -2; -4 3] |
| -5, 2 | [ 1 -2; -3 -4] |
| 2, 3 | [ 1 -2; 1 4] |
| -2, -1 | [ 1 -2; 3 -4] |
| -3, 2 | [ 1 -1; -4 -2] |
| -1, 3 | [ 1 -1; -4 1] |
| 2, 3 | [ 1 -1; 2 4] |
| -1, (-1) | [ 1 -1; 4 -3] |
| -1, (-1) | [ 1 1; -4 -3] |
| 2, 3 | [ 1 1; -2 4] |
| -3, 2 | [ 1 1; 4 -2] |
| -1, 3 | [ 1 1; 4 1] |
| -2, -1 | [ 1 2; -3 -4] |
| 2, 3 | [ 1 2; -1 4] |
| -5, 2 | [ 1 2; 3 -4] |
| -3, 3 | [ 1 2; 4 -1] |
| -1, 5 | [ 1 2; 4 3] |
| -2, -1 | [ 1 3; -2 -4] |
| -5, 2 | [ 1 3; 2 -4] |
| -5, 3 | [ 1 3; 4 -3] |
| -3, 4 | [ 1 3; 4 0] |
| -2, 5 | [ 1 3; 4 2] |
| -1, (-1) | [ 1 4; -1 -3] |
| -3, 2 | [ 1 4; 1 -2] |
| -1, 3 | [ 1 4; 1 1] |
| -3, 3 | [ 1 4; 2 -1] |
| -1, 5 | [ 1 4; 2 3] |
| -5, 3 | [ 1 4; 3 -3] |
| -3, 4 | [ 1 4; 3 0] |
| -2, 5 | [ 1 4; 3 2] |
| -4, 4 | [ 2 -4; -3 -2] |
| -2, 5 | [ 2 -4; -3 1] |
| -1, 6 | [ 2 -4; -3 3] |
| -2, 3 | [ 2 -4; -1 -1] |
| -2, 1 | [ 2 -4; 1 -3] |
| -4, 4 | [ 2 -3; -4 -2] |
| -2, 5 | [ 2 -3; -4 1] |
| -1, 6 | [ 2 -3; -4 3] |
| 1, 5 | [ 2 -3; -1 4] |
| -1, (-1) | [ 2 -3; 3 -4] |
| -2, 3 | [ 2 -1; -4 -1] |
| 1, 5 | [ 2 -1; -3 4] |
| 3, (3) | [ 2 -1; 1 4] |
| -2, 1 | [ 2 -1; 4 -3] |
| -2, 1 | [ 2 1; -4 -3] |
| 3, (3) | [ 2 1; -1 4] |
| 1, 5 | [ 2 1; 3 4] |
| -2, 3 | [ 2 1; 4 -1] |
| -1, (-1) | [ 2 3; -3 -4] |
| 1, 5 | [ 2 3; 1 4] |
| -4, 4 | [ 2 3; 4 -2] |
| -2, 5 | [ 2 3; 4 1] |
| -1, 6 | [ 2 3; 4 3] |
| -2, 1 | [ 2 4; -1 -3] |
| -2, 3 | [ 2 4; 1 -1] |
| -4, 4 | [ 2 4; 3 -2] |
| -2, 5 | [ 2 4; 3 1] |
| -1, 6 | [ 2 4; 3 3] |
| -3, 5 | [ 3 -4; -3 -1] |
| -1, 6 | [ 3 -4; -3 2] |
| -5, 4 | [ 3 -4; -2 -4] |
| -1, 5 | [ 3 -4; -2 1] |
| -1, 4 | [ 3 -4; -1 0] |
| 1, 5 | [ 3 -4; -1 3] |
| -1, 2 | [ 3 -4; 1 -2] |
| 1, (1) | [ 3 -4; 1 -1] |
| -1, 1 | [ 3 -4; 2 -3] |
| -3, 5 | [ 3 -3; -4 -1] |
| -1, 6 | [ 3 -3; -4 2] |
| 1, 6 | [ 3 -3; -2 4] |
| -3, 2 | [ 3 -3; 2 -4] |
| -5, 4 | [ 3 -2; -4 -4] |
| -1, 5 | [ 3 -2; -4 1] |
| 1, 6 | [ 3 -2; -3 4] |
| 2, 5 | [ 3 -2; -1 4] |
| -3, 2 | [ 3 -2; 3 -4] |
| -1, 1 | [ 3 -2; 4 -3] |
| -1, 4 | [ 3 -1; -4 0] |
| 1, 5 | [ 3 -1; -4 3] |
| 2, 5 | [ 3 -1; -2 4] |
| -1, 2 | [ 3 -1; 4 -2] |
| 1, (1) | [ 3 -1; 4 -1] |
| -1, 2 | [ 3 1; -4 -2] |
| 1, (1) | [ 3 1; -4 -1] |
| 2, 5 | [ 3 1; 2 4] |
| -1, 4 | [ 3 1; 4 0] |
| 1, 5 | [ 3 1; 4 3] |
| -1, 1 | [ 3 2; -4 -3] |
| -3, 2 | [ 3 2; -3 -4] |
| 2, 5 | [ 3 2; 1 4] |
| 1, 6 | [ 3 2; 3 4] |
| -5, 4 | [ 3 2; 4 -4] |
| -1, 5 | [ 3 2; 4 1] |
| -3, 2 | [ 3 3; -2 -4] |
| 1, 6 | [ 3 3; 2 4] |
| -3, 5 | [ 3 3; 4 -1] |
| -1, 6 | [ 3 3; 4 2] |
| -1, 1 | [ 3 4; -2 -3] |
| -1, 2 | [ 3 4; -1 -2] |
| 1, (1) | [ 3 4; -1 -1] |
| -1, 4 | [ 3 4; 1 0] |
| 1, 5 | [ 3 4; 1 3] |
| -5, 4 | [ 3 4; 2 -4] |
| -1, 5 | [ 3 4; 2 1] |
| -3, 5 | [ 3 4; 3 -1] |
| -1, 6 | [ 3 4; 3 2] |
| -2, 6 | [ 4 -4; -3 0] |
| -4, 5 | [ 4 -4; -2 -3] |
| 2, 6 | [ 4 -4; -1 4] |
| 2, (2) | [ 4 -4; 1 0] |
| -2, 2 | [ 4 -4; 3 -4] |
| -2, 6 | [ 4 -3; -4 0] |
| -2, 5 | [ 4 -3; -2 -1] |
| 1, 6 | [ 4 -3; -2 3] |
| 1, 5 | [ 4 -3; -1 2] |
| 1, 3 | [ 4 -3; 1 0] |
| -2, 3 | [ 4 -3; 2 -3] |
| 1, 2 | [ 4 -3; 2 -1] |
| 1, (1) | [ 4 -3; 3 -2] |
| -2, 2 | [ 4 -3; 4 -4] |
| -4, 5 | [ 4 -2; -4 -3] |
| -2, 5 | [ 4 -2; -3 -1] |
| 1, 6 | [ 4 -2; -3 3] |
| 2, 5 | [ 4 -2; -1 3] |
| 2, 3 | [ 4 -2; 1 1] |
| -2, 3 | [ 4 -2; 3 -3] |
| 1, 2 | [ 4 -2; 3 -1] |
| 2, 6 | [ 4 -1; -4 4] |
| 1, 5 | [ 4 -1; -3 2] |
| 2, 5 | [ 4 -1; -2 3] |
| 3, (3) | [ 4 -1; 1 2] |
| 2, 3 | [ 4 -1; 2 1] |
| 1, 3 | [ 4 -1; 3 0] |
| 2, (2) | [ 4 -1; 4 0] |
| 2, (2) | [ 4 1; -4 0] |
| 1, 3 | [ 4 1; -3 0] |
| 2, 3 | [ 4 1; -2 1] |
| 3, (3) | [ 4 1; -1 2] |
| 2, 5 | [ 4 1; 2 3] |
| 1, 5 | [ 4 1; 3 2] |
| 2, 6 | [ 4 1; 4 4] |
| -2, 3 | [ 4 2; -3 -3] |
| 1, 2 | [ 4 2; -3 -1] |
| 2, 3 | [ 4 2; -1 1] |
| 2, 5 | [ 4 2; 1 3] |
| -2, 5 | [ 4 2; 3 -1] |
| 1, 6 | [ 4 2; 3 3] |
| -4, 5 | [ 4 2; 4 -3] |
| -2, 2 | [ 4 3; -4 -4] |
| 1, (1) | [ 4 3; -3 -2] |
| -2, 3 | [ 4 3; -2 -3] |
| 1, 2 | [ 4 3; -2 -1] |
| 1, 3 | [ 4 3; -1 0] |
| 1, 5 | [ 4 3; 1 2] |
| -2, 5 | [ 4 3; 2 -1] |
| 1, 6 | [ 4 3; 2 3] |
| -2, 6 | [ 4 3; 4 0] |
| -2, 2 | [ 4 4; -3 -4] |
| 2, (2) | [ 4 4; -1 0] |
| 2, 6 | [ 4 4; 1 4] |
| -4, 5 | [ 4 4; 2 -3] |
| -2, 6 | [ 4 4; 3 0] |
These are all such matrices up to multiplication by -1, in which case, the eigenvalues are also negated.
| Eigenvalues | Matrix |
|---|---|
| -4, -1 | [ 0 1; -4 -5] |
| 1, 4 | [ 0 1; -4 5] |
| -5, 1 | [ 0 1; 5 -4] |
| -1, 5 | [ 0 1; 5 4] |
| -3, -2 | [ 0 2; -3 -5] |
| 2, 3 | [ 0 2; -3 5] |
| -4, -1 | [ 0 2; -2 -5] |
| 1, 4 | [ 0 2; -2 5] |
| -6, 1 | [ 0 2; 3 -5] |
| -1, 6 | [ 0 2; 3 5] |
| -5, 2 | [ 0 2; 5 -3] |
| -2, 5 | [ 0 2; 5 3] |
| -3, -2 | [ 0 3; -2 -5] |
| 2, 3 | [ 0 3; -2 5] |
| -6, 1 | [ 0 3; 2 -5] |
| -1, 6 | [ 0 3; 2 5] |
| -5, 3 | [ 0 3; 5 -2] |
| -3, 5 | [ 0 3; 5 2] |
| -4, -1 | [ 0 4; -1 -5] |
| 1, 4 | [ 0 4; -1 5] |
| -5, 4 | [ 0 4; 5 -1] |
| -4, 5 | [ 0 4; 5 1] |
| -5, 1 | [ 0 5; 1 -4] |
| -1, 5 | [ 0 5; 1 4] |
| -5, 2 | [ 0 5; 2 -3] |
| -2, 5 | [ 0 5; 2 3] |
| -5, 3 | [ 0 5; 3 -2] |
| -3, 5 | [ 0 5; 3 2] |
| -5, 4 | [ 0 5; 4 -1] |
| -4, 5 | [ 0 5; 4 1] |
| -4, 5 | [ 1 -5; -4 0] |
| -3, 6 | [ 1 -5; -4 2] |
| -4, 4 | [ 1 -5; -3 -1] |
| -2, 6 | [ 1 -5; -3 3] |
| -4, 3 | [ 1 -5; -2 -2] |
| -1, 6 | [ 1 -5; -2 4] |
| -4, 2 | [ 1 -5; -1 -3] |
| -4, 5 | [ 1 -4; -5 0] |
| -3, 6 | [ 1 -4; -5 2] |
| -1, 7 | [ 1 -4; -3 5] |
| 3, (3) | [ 1 -4; 1 5] |
| -3, -1 | [ 1 -4; 2 -5] |
| -4, 4 | [ 1 -3; -5 -1] |
| -2, 6 | [ 1 -3; -5 3] |
| -1, 7 | [ 1 -3; -4 5] |
| 2, 4 | [ 1 -3; 1 5] |
| -2, (-2) | [ 1 -3; 3 -5] |
| -4, 3 | [ 1 -2; -5 -2] |
| -1, 6 | [ 1 -2; -5 4] |
| 3, (3) | [ 1 -2; 2 5] |
| -3, -1 | [ 1 -2; 4 -5] |
| -4, 2 | [ 1 -1; -5 -3] |
| 2, 4 | [ 1 -1; 3 5] |
| 3, (3) | [ 1 -1; 4 5] |
| 3, (3) | [ 1 1; -4 5] |
| 2, 4 | [ 1 1; -3 5] |
| -4, 2 | [ 1 1; 5 -3] |
| -3, -1 | [ 1 2; -4 -5] |
| 3, (3) | [ 1 2; -2 5] |
| -4, 3 | [ 1 2; 5 -2] |
| -1, 6 | [ 1 2; 5 4] |
| -2, (-2) | [ 1 3; -3 -5] |
| 2, 4 | [ 1 3; -1 5] |
| -1, 7 | [ 1 3; 4 5] |
| -4, 4 | [ 1 3; 5 -1] |
| -2, 6 | [ 1 3; 5 3] |
| -3, -1 | [ 1 4; -2 -5] |
| 3, (3) | [ 1 4; -1 5] |
| -1, 7 | [ 1 4; 3 5] |
| -4, 5 | [ 1 4; 5 0] |
| -3, 6 | [ 1 4; 5 2] |
| -4, 2 | [ 1 5; 1 -3] |
| -4, 3 | [ 1 5; 2 -2] |
| -1, 6 | [ 1 5; 2 4] |
| -4, 4 | [ 1 5; 3 -1] |
| -2, 6 | [ 1 5; 3 3] |
| -4, 5 | [ 1 5; 4 0] |
| -3, 6 | [ 1 5; 4 2] |
| -3, 6 | [ 2 -5; -4 1] |
| -2, 7 | [ 2 -5; -4 3] |
| -3, 5 | [ 2 -5; -3 0] |
| -1, 7 | [ 2 -5; -3 4] |
| -3, 4 | [ 2 -5; -2 -1] |
| -3, 3 | [ 2 -5; -1 -2] |
| -3, 1 | [ 2 -5; 1 -4] |
| -3, 6 | [ 2 -4; -5 1] |
| -2, 7 | [ 2 -4; -5 3] |
| -6, 3 | [ 2 -4; -2 -5] |
| 1, 6 | [ 2 -4; -1 5] |
| -2, -1 | [ 2 -4; 3 -5] |
| -3, 5 | [ 2 -3; -5 0] |
| -1, 7 | [ 2 -3; -5 4] |
| -4, 1 | [ 2 -3; 2 -5] |
| -2, -1 | [ 2 -3; 4 -5] |
| -3, 4 | [ 2 -2; -5 -1] |
| -6, 3 | [ 2 -2; -4 -5] |
| 3, 4 | [ 2 -2; 1 5] |
| -4, 1 | [ 2 -2; 3 -5] |
| -3, 3 | [ 2 -1; -5 -2] |
| 1, 6 | [ 2 -1; -4 5] |
| 3, 4 | [ 2 -1; 2 5] |
| -3, 1 | [ 2 -1; 5 -4] |
| -3, 1 | [ 2 1; -5 -4] |
| 3, 4 | [ 2 1; -2 5] |
| 1, 6 | [ 2 1; 4 5] |
| -3, 3 | [ 2 1; 5 -2] |
| -4, 1 | [ 2 2; -3 -5] |
| 3, 4 | [ 2 2; -1 5] |
| -6, 3 | [ 2 2; 4 -5] |
| -3, 4 | [ 2 2; 5 -1] |
| -2, -1 | [ 2 3; -4 -5] |
| -4, 1 | [ 2 3; -2 -5] |
| -3, 5 | [ 2 3; 5 0] |
| -1, 7 | [ 2 3; 5 4] |
| -2, -1 | [ 2 4; -3 -5] |
| 1, 6 | [ 2 4; 1 5] |
| -6, 3 | [ 2 4; 2 -5] |
| -3, 6 | [ 2 4; 5 1] |
| -2, 7 | [ 2 4; 5 3] |
| -3, 1 | [ 2 5; -1 -4] |
| -3, 3 | [ 2 5; 1 -2] |
| -3, 4 | [ 2 5; 2 -1] |
| -3, 5 | [ 2 5; 3 0] |
| -1, 7 | [ 2 5; 3 4] |
| -3, 6 | [ 2 5; 4 1] |
| -2, 7 | [ 2 5; 4 3] |
| -7, 5 | [ 3 -5; -4 -5] |
| -2, 7 | [ 3 -5; -4 2] |
| -1, 8 | [ 3 -5; -4 4] |
| -2, 6 | [ 3 -5; -3 1] |
| -2, 5 | [ 3 -5; -2 0] |
| -2, 4 | [ 3 -5; -1 -1] |
| -2, 2 | [ 3 -5; 1 -3] |
| -2, 1 | [ 3 -5; 2 -4] |
| -7, 5 | [ 3 -4; -5 -5] |
| -2, 7 | [ 3 -4; -5 2] |
| -1, 8 | [ 3 -4; -5 4] |
| 1, 7 | [ 3 -4; -2 5] |
| -3, 1 | [ 3 -4; 3 -5] |
| -1, (-1) | [ 3 -4; 4 -5] |
| -2, 6 | [ 3 -3; -5 1] |
| 2, 6 | [ 3 -3; -1 5] |
| -3, 1 | [ 3 -3; 4 -5] |
| -2, 5 | [ 3 -2; -5 0] |
| 1, 7 | [ 3 -2; -4 5] |
| -2, 1 | [ 3 -2; 5 -4] |
| -2, 4 | [ 3 -1; -5 -1] |
| 2, 6 | [ 3 -1; -3 5] |
| 4, (4) | [ 3 -1; 1 5] |
| -2, 2 | [ 3 -1; 5 -3] |
| -2, 2 | [ 3 1; -5 -3] |
| 4, (4) | [ 3 1; -1 5] |
| 2, 6 | [ 3 1; 3 5] |
| -2, 4 | [ 3 1; 5 -1] |
| -2, 1 | [ 3 2; -5 -4] |
| 1, 7 | [ 3 2; 4 5] |
| -2, 5 | [ 3 2; 5 0] |
| -3, 1 | [ 3 3; -4 -5] |
| 2, 6 | [ 3 3; 1 5] |
| -2, 6 | [ 3 3; 5 1] |
| -1, (-1) | [ 3 4; -4 -5] |
| -3, 1 | [ 3 4; -3 -5] |
| 1, 7 | [ 3 4; 2 5] |
| -7, 5 | [ 3 4; 5 -5] |
| -2, 7 | [ 3 4; 5 2] |
| -1, 8 | [ 3 4; 5 4] |
| -2, 1 | [ 3 5; -2 -4] |
| -2, 2 | [ 3 5; -1 -3] |
| -2, 4 | [ 3 5; 1 -1] |
| -2, 5 | [ 3 5; 2 0] |
| -2, 6 | [ 3 5; 3 1] |
| -7, 5 | [ 3 5; 4 -5] |
| -2, 7 | [ 3 5; 4 2] |
| -1, 8 | [ 3 5; 4 4] |
| -6, 6 | [ 4 -5; -4 -4] |
| -1, 8 | [ 4 -5; -4 3] |
| -1, 7 | [ 4 -5; -3 2] |
| -6, 5 | [ 4 -5; -2 -5] |
| -1, 6 | [ 4 -5; -2 1] |
| -1, 5 | [ 4 -5; -1 0] |
| -1, 3 | [ 4 -5; 1 -2] |
| -1, 2 | [ 4 -5; 2 -3] |
| -1, 1 | [ 4 -5; 3 -4] |
| -6, 6 | [ 4 -4; -5 -4] |
| -1, 8 | [ 4 -4; -5 3] |
| 1, 8 | [ 4 -4; -3 5] |
| -4, 3 | [ 4 -4; 2 -5] |
| -1, 7 | [ 4 -3; -5 2] |
| 1, 8 | [ 4 -3; -4 5] |
| 2, 7 | [ 4 -3; -2 5] |
| -1, 1 | [ 4 -3; 5 -4] |
| -6, 5 | [ 4 -2; -5 -5] |
| -1, 6 | [ 4 -2; -5 1] |
| 2, 7 | [ 4 -2; -3 5] |
| 3, 6 | [ 4 -2; -1 5] |
| -4, 3 | [ 4 -2; 4 -5] |
| -1, 2 | [ 4 -2; 5 -3] |
| -1, 5 | [ 4 -1; -5 0] |
| 3, 6 | [ 4 -1; -2 5] |
| -1, 3 | [ 4 -1; 5 -2] |
| -1, 3 | [ 4 1; -5 -2] |
| 3, 6 | [ 4 1; 2 5] |
| -1, 5 | [ 4 1; 5 0] |
| -1, 2 | [ 4 2; -5 -3] |
| -4, 3 | [ 4 2; -4 -5] |
| 3, 6 | [ 4 2; 1 5] |
| 2, 7 | [ 4 2; 3 5] |
| -6, 5 | [ 4 2; 5 -5] |
| -1, 6 | [ 4 2; 5 1] |
| -1, 1 | [ 4 3; -5 -4] |
| 2, 7 | [ 4 3; 2 5] |
| 1, 8 | [ 4 3; 4 5] |
| -1, 7 | [ 4 3; 5 2] |
| -4, 3 | [ 4 4; -2 -5] |
| 1, 8 | [ 4 4; 3 5] |
| -6, 6 | [ 4 4; 5 -4] |
| -1, 8 | [ 4 4; 5 3] |
| -1, 1 | [ 4 5; -3 -4] |
| -1, 2 | [ 4 5; -2 -3] |
| -1, 3 | [ 4 5; -1 -2] |
| -1, 5 | [ 4 5; 1 0] |
| -6, 5 | [ 4 5; 2 -5] |
| -1, 6 | [ 4 5; 2 1] |
| -1, 7 | [ 4 5; 3 2] |
| -6, 6 | [ 4 5; 4 -4] |
| -1, 8 | [ 4 5; 4 3] |
| -5, 7 | [ 5 -5; -4 -3] |
| -5, 6 | [ 5 -5; -2 -4] |
| -5, 7 | [ 5 -4; -5 -3] |
| -1, 7 | [ 5 -4; -3 1] |
| 1, 8 | [ 5 -4; -3 4] |
| -3, 6 | [ 5 -4; -2 -2] |
| 1, 7 | [ 5 -4; -2 3] |
| 1, 6 | [ 5 -4; -1 2] |
| 3, 7 | [ 5 -4; -1 5] |
| 1, 4 | [ 5 -4; 1 0] |
| 3, (3) | [ 5 -4; 1 1] |
| -3, 4 | [ 5 -4; 2 -4] |
| 1, 3 | [ 5 -4; 2 -1] |
| -1, 3 | [ 5 -4; 3 -3] |
| 1, 2 | [ 5 -4; 3 -2] |
| -3, 3 | [ 5 -4; 4 -5] |
| 1, (1) | [ 5 -4; 4 -3] |
| -1, 7 | [ 5 -3; -4 1] |
| 1, 8 | [ 5 -3; -4 4] |
| -1, 6 | [ 5 -3; -2 0] |
| 2, 7 | [ 5 -3; -2 4] |
| 2, 6 | [ 5 -3; -1 3] |
| 2, 4 | [ 5 -3; 1 1] |
| -1, 4 | [ 5 -3; 2 -2] |
| 2, 3 | [ 5 -3; 2 0] |
| -4, 4 | [ 5 -3; 3 -5] |
| 2, (2) | [ 5 -3; 3 -1] |
| -1, 3 | [ 5 -3; 4 -3] |
| 1, 2 | [ 5 -3; 4 -2] |
| -5, 6 | [ 5 -2; -5 -4] |
| -3, 6 | [ 5 -2; -4 -2] |
| 1, 7 | [ 5 -2; -4 3] |
| -1, 6 | [ 5 -2; -3 0] |
| 2, 7 | [ 5 -2; -3 4] |
| 3, 6 | [ 5 -2; -1 4] |
| 3, 4 | [ 5 -2; 1 2] |
| 1, 4 | [ 5 -2; 2 0] |
| 3, (3) | [ 5 -2; 2 1] |
| -1, 4 | [ 5 -2; 3 -2] |
| 2, 3 | [ 5 -2; 3 0] |
| -3, 4 | [ 5 -2; 4 -4] |
| 1, 3 | [ 5 -2; 4 -1] |
| 1, 6 | [ 5 -1; -4 2] |
| 3, 7 | [ 5 -1; -4 5] |
| 2, 6 | [ 5 -1; -3 3] |
| 3, 6 | [ 5 -1; -2 4] |
| 4, (4) | [ 5 -1; 1 3] |
| 3, 4 | [ 5 -1; 2 2] |
| 2, 4 | [ 5 -1; 3 1] |
| 1, 4 | [ 5 -1; 4 0] |
| 3, (3) | [ 5 -1; 4 1] |
| 1, 4 | [ 5 1; -4 0] |
| 3, (3) | [ 5 1; -4 1] |
| 2, 4 | [ 5 1; -3 1] |
| 3, 4 | [ 5 1; -2 2] |
| 4, (4) | [ 5 1; -1 3] |
| 3, 6 | [ 5 1; 2 4] |
| 2, 6 | [ 5 1; 3 3] |
| 1, 6 | [ 5 1; 4 2] |
| 3, 7 | [ 5 1; 4 5] |
| -3, 4 | [ 5 2; -4 -4] |
| 1, 3 | [ 5 2; -4 -1] |
| -1, 4 | [ 5 2; -3 -2] |
| 2, 3 | [ 5 2; -3 0] |
| 1, 4 | [ 5 2; -2 0] |
| 3, (3) | [ 5 2; -2 1] |
| 3, 4 | [ 5 2; -1 2] |
| 3, 6 | [ 5 2; 1 4] |
| -1, 6 | [ 5 2; 3 0] |
| 2, 7 | [ 5 2; 3 4] |
| -3, 6 | [ 5 2; 4 -2] |
| 1, 7 | [ 5 2; 4 3] |
| -5, 6 | [ 5 2; 5 -4] |
| -1, 3 | [ 5 3; -4 -3] |
| 1, 2 | [ 5 3; -4 -2] |
| -4, 4 | [ 5 3; -3 -5] |
| 2, (2) | [ 5 3; -3 -1] |
| -1, 4 | [ 5 3; -2 -2] |
| 2, 3 | [ 5 3; -2 0] |
| 2, 4 | [ 5 3; -1 1] |
| 2, 6 | [ 5 3; 1 3] |
| -1, 6 | [ 5 3; 2 0] |
| 2, 7 | [ 5 3; 2 4] |
| -1, 7 | [ 5 3; 4 1] |
| 1, 8 | [ 5 3; 4 4] |
| -3, 3 | [ 5 4; -4 -5] |
| 1, (1) | [ 5 4; -4 -3] |
| -1, 3 | [ 5 4; -3 -3] |
| 1, 2 | [ 5 4; -3 -2] |
| -3, 4 | [ 5 4; -2 -4] |
| 1, 3 | [ 5 4; -2 -1] |
| 1, 4 | [ 5 4; -1 0] |
| 3, (3) | [ 5 4; -1 1] |
| 1, 6 | [ 5 4; 1 2] |
| 3, 7 | [ 5 4; 1 5] |
| -3, 6 | [ 5 4; 2 -2] |
| 1, 7 | [ 5 4; 2 3] |
| -1, 7 | [ 5 4; 3 1] |
| 1, 8 | [ 5 4; 3 4] |
| -5, 7 | [ 5 4; 5 -3] |
| -5, 6 | [ 5 5; 2 -4] |
| -5, 7 | [ 5 5; 4 -3] |