
ECE 604- PSET 5 Solution

1. a) Define Yn = XN−n for some N fixed. It can be taken to be 0 wlog.
We need to show IP{Yn+1 ∈ A|Y0, Y1, · · · , Yn} = IP{Yn+1 ∈ A|Yn}.
By abuse of notation:

IP(Yn+1 ∈ A|Y0, · · · , Yn) =
IP(Yn+1 ∈ A, Y0, Y1, · · · , Yn)

IP(Y0, · · · , Yn)

=
IP(X−(n+1) ∈ A)

∏0
k=n IP(X−k+1|X−k)

P (X−n
∏0
k=n IP(X−k+1|X−k)

=
IP(X−(n+1) ∈ A)

IP(X−n)
= IP(Yn+1 ∈ A|Yn)

Establishing that it is Markov in reverse time.

b) The reverse chain need not be homogeneous even when {Xn} is unless {Xn} is stationary.
To see this: Let Qi,j(n) = IP(Yn+1 = j|Yn = i)
Then:

Qi,j(n) = IP(Yn+1 = j|Yn = i)

=
IP(Yn+1 = j, Yn = i)

IP(Yn = i)

=
Pj,iπj(−n)
πi(−n)

where πj(−n) = IP(X−n = j). Since this depends on n the transition probabilities of {Yn}
depend on n and so the process is not a HMC.
If {Xn} is stationary then πj(n) = πj and then:

Qi,j = Pj,i
πj
πi

and then {Yn} is a HMC.

c)
IP(Xn−1 = i,Xn+1 = j|Xn = k) = IP(Xn−1 = i|Xn = k)IP(Xn+1 = j|Xn = k)

by the conditional independence of the future and past given the present property of Markov
processes.
Therefore using the previous result above we obtain:

IP(Xn−1 = i,Xn+1 = j|Xn = k) = Pik
πi
πk
Pkj

2. This problem has been solved in the notes. See section on coupling. (End of the Chapter)
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3. Let fij = IP(τj <∞|X0 = i) = IP(Xn = j eventually|X0 = i)

The first part is easy.

We now show:

sup
n
P

(n)
ij ≤ fij ≤

∞∑
m=1

P
(m)
ij

From 1-step analysis:

P
(n)
ij =

n∑
m=1

f
(m)
ij P

(n−m)
jj

Hence:

sup
n
P
n)
ij ≤

∞∑
m=1

f
(m)
ij = fij

Now:

Nj =
∞∑
n=1

1[Xn=j]

So:

Ei[Nj ] =
∞∑
n=1

Ei[1[Xn=j]] =
∞∑
m=1

P
(m)
ij

Now:

fij =
∞∑
m=1

IPi(τj = m) =
∞∑
m=1

E[1[τj=m]]

Noting that:
1[τj=m] = 1[X1 6=j,X2 6=j,Xm−1 6=j,Xm=j] ≤ 1[Xm=j]

The result follows since

fij =
∞∑
m=1

Ei[1[τj=m]] ≤
∞∑
m=1

Ei[1[Xm=j]] =
∞∑
m=1

P
(m)
i,j

4. We know from 1-step analysis that:

P
(n)
ij =

n∑
m=1

f
(m)
ij P

(n−m)
jj

To prove this result we use the following result

Let u0 = 1 and
∑∞
k=1 fk = 1, with f0 = 0 and

un =
n∑
k=1

fkun−k

Then:
lim
n→∞

un =
1∑∞

k=1 kfk
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Proof: Take z-transforms on both sides with U(z) =
∑∞
k=0 ukz

k and F (z) =
∑∞
k=0 fkz

k =∑∞
k=1 fkz

k.

Now
∑∞
k=1 ukz

k = U(z)− 1 since u0 = 1. Therefore taking z-transforms on both sides

U(z)− 1 = F (z)U(z)

or
U(z) =

1
1− F (z)

¿From the final value theorem:

lim
n→∞

u+ n = (1− z)U(z)|z=1

Hence:
lim
n→∞

un =
1− z

1− F (z)
|z=1

.

Noting F (1) =
∑∞
k=0 fk = 1 by assumption, we have via l’Hospital’s rule:

lim
n→∞

un =
−1
−F ′(z)

|z=1 =
1∑∞

k=1 kfkz
k−1
|z=1

=
1∑∞

k=1 kfk

Applying this result taking un = P
(n)
jj and fn = f

(n)
jj we obtain:

lim
n→∞

P
(n)
jj =

1∑∞
n=1 nf

(n)
jj

=
1

Ej [τj ]

So if j is recurrent we know Ej [τj ] =∞ while if j is positive recurrent Ej [τj ] <∞.

Now using the fact that if xn → x then 1
n

∑n
k=1 xk → x it readily follows that

lim
N→∞

1
N

N∑
n=1

P
(n)
ij = lim

N→∞

1
N

N∑
n=1

n∑
m=1

f
(m)
ij P

(n−m)
jj

= lim
N→∞

∞∑
m=1

f
(m)
ij

1
N

N∑
n=1

P
(n−m)
jj 1[m≤n]

= fi,j lim
N→∞

1
N

N∑
p=0

P
(p)
jj =

fij
Ej [τj ]

5. {Xn} is ergodic which implies that the states are positive recurrent and hence Ej [τj ] <∞.

We know that πj = 1
Ej [τj ]

.
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Therefore:

E[τ ] =
∑
j∈E

E[τ |X0 = j]IP(X0 = j)

=
∑
j∈E

Ej [τj ]πj

=
∑
j∈E

1
πj
πj = |E|

Hence if |E| =∞ the mean return time is infinite. This does not contradict positive recurrence
because what positive recurrence states is that for every state the expected return time to that
state is finite. Since there are in infinite number of states, cycling through all of them is a
countable number of finite terms which is infinite.

6. First, note that the sequence {τn} is a sequence of stopping or Markov times with τn → ∞ as
n→∞ since Xn is positive recurrent.

Let Yn = Xτn then by ergodicity:

πY (i) = lim
N→∞

1
N

N∑
n=1

1[Yn=i] = lim
N→∞

1
N

N∑
n=1

1[Xτn=i]

Also by the ergodic theorem for MC:

πi = lim
n→∞

1
τn

τn∑
n=1

1[Xn=i]

Furthermore:
lim
N→∞

N

τN
= Fraction of time Xn ∈ Y =

∑
i∈Y

π

Now the number of times in [0, N ] Yn is in state i ∈ Y i.e.
∑N
n=1 1[Yn=i,i∈Y ] is the same as the

number of times in [0, τn] that Xn = i, ı ∈ Y .

Hence:

πY (i) = lim
N→∞

τN
N
.

1
τN

N∑
n=1

1[Xτn=i]

= lim
N→∞

τN
N
.

1
τN

N∑
n=1

1[Xn=i]

=
πi1[i∈Y ]∑
j∈Y πj

Now:

P =

 0.25 0.75 0
0.5 0.25 0.25
0 0.5 0.5


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Let us first find the stationary distribution π that satisfies π = πP which gives:

πa = 0.25πa + 0.5πb
πb = 0.75πa + 0.25πb + 0.5πc
πc = 0.25πb + 0.5πc

Using the fact that πa + πb + πc = 1 we can solve for π.

i) If Y = {a, b} we obtain using the result above:

πY (a) =
πa

πa + πb
=

2
5

πY (b) =
πb

πa + πb
=

3
5

ii) Y = {a, c} we obtain:

πY (a) =
πa

πa + πc
=

4
7

πY (c) =
3
7

Let us now obtain this result the long way i.e. by calculating the probability transition matrix
for the reduced state space chains i.e. for Yn = Xτn .

Case i)
Qa,b = IP(Yn+1 = b|Yn = a)

Then:

Qab = Pab + PacPcb + PacP
2
ccPcb + PacP

3
ccPcb + . . .

= Pab + Pac

( ∞∑
i=0

P icc

)
Pcb

= Pab = 0.75 since Pac = 0

Now Qaa = 1−Qab = 0.25 and similarly we have

Qba = Pba + Pbc
1

1− Pcc
Pca = Pba = 0.5

and Qbb = 1−Qba = 0.5.

Now solving for πY = πYQ we obtain πY (a) = 2
5 and πY (b) = 3

5 that coincides with our earlier
answer.

Case ii) when Y = {a, c}.

Qac = Pac + Pab

( ∞∑
i=0

P ibb

)
Pbc

=
3
4

1
1− 1

4

1
4

=
1
4
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Therefore Qaa = 3
4 .

Similarly:

Qca = Pca + Pcb

( ∞∑
i=0

Pbb

)
Pba

=
1
3

and hence Qcc = 2
3 .

Once again solving for πY = πyQ gives: πY (a) = 4
7 and πY (c) = 3

7 .

7. This equation represents the evolution of a M/G/1 queue viewed at departure times (to under-
stand what this means you will need to take ECE 605)

From the recursion:
Xn+1 = (Xn − 1)+ + ηn

where ηn is an i.i.d sequence independent of {Xu, u ≤ n} implies that: {Xn} is a Markov chain
defined on {0, 1, 2, · · ·}.
One way to obtain the stability conditions (conditions for positive recurrence) is by using Pakes’
lemma which gives:

E[Xn+1 −Xn|Xn = i] = −1 + E[ηn], i ≥ 1
= E[ηn] , i = 0

Hence if E[ηn] < 1 by Pakes’ lemma {Xn} is positive recurrent.

For E[ηn] < 1 we need p0 > 0, p0 + p1 < 1 and
∑∞
k=1 kpk < 1 where pk = IP(η0 = k). On the

other hand if E[η0] ≥ 1 then E[Xn]→∞ and the process is not positive recurrent.

8. In this problem we will compute the distribution of the coupling time exactly.

Let {Xn} and {Yn} be two independent Markov chains on {1, 2} with the same transition
probability matrix given by:

P =

[
1− α α
β 1− β

]

Let the coupling time denoted by τ be defined by:

τ = inf{n ≥ 1 : Xn = Yn|X0 = 1, Y0 = 2}

Then:
IP(τ > n) = IP(X1 6= Y1, X2 6= Y2, . . . , Xn 6= Yn|X0 = 1, Y0 = 2)

Now since the chains are independent:

IP(X0 = X1, X2 = X1, · · · , Xn = Xn−1;Y0 = Y1, . . . , Yn = Yn−1) = (1− α)n(1− β)n
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Clearly since we start out fro different states Xn 6= Yn if and only if the both jump at the same
time i.e. X from 1 to 2 and Y from 2 to 1.

Probability of 1 simultaneous jump is
(n
1

)
α(1− α)n−1β(1− β)n−1

Similarly they will be unequal iff they continue to have simultaneous jumps. For 2 simultaneous
jumps the probability is

(n
2

)
α2(1− α)n−2β2(1− β)n−2, etc.

Hence:

IP(τ > n) =
n∑
k=0

(
n

k

)
(1− α)n−kαk(1− β)n−kβk

= ((1− α)(1− β) + αβ)n

But (1− α)(1− β) + αβ < 1− (α− β)2 < 1 since both α, β < 1.

This establishes the fact that the coupling time has a geometric distribution establishing geo-
metric ergodicity.

9. The solution to this problem is exactly as in Problem 6.

Indeed let us do it directly:

BY definition of τN we have
τN∑
k=1

1[Xk∈A] = N

Therefore:

lim
N→∞

N

τN
= lim

N→∞

1
τN

τN∑
k=1

1[Xk∈A]

= Eπ[1[X0∈A]] by SLLN for Markov chains

Therefore:
lim
N→∞

τN
N

=
1∑
i∈A πi
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