EE604- Stochastic Processes Problem Set # 5 Fall 2013

These are some problems on SLLN, and second-order processes.

- 1. a) Show $\sqrt{\lambda}W_{\frac{t}{\lambda}}$ is a standard Brownian motion process.
 - b) Let $\{X_t; -\infty < t < \infty\}$ be a 0 mean Gaussian process with $\mathbf{E}[X_t X_s] = e^{-\lambda |t-s|}$. Express X_t for $t \ge 0$ in the form

$$X_t = f(t)W_{\frac{g(t)}{f(t)}}$$

where $\{W_t; t \geq 0\}$ is a standard Brownian motion.

2. Let $\{X_n\}$ be a sequence of non-negative identically distributed r.v's with $\mathbf{E}[X_n] < \infty$. Then show that:

$$\frac{X_n}{n} \stackrel{a.s}{\to} 0$$

3. Let $\{X_n\}$ be a second order sequence (mean 0). Show that a necessary and sufficient condition for $\{X_n\}$ to converge in the mean square is that:

$$\mathbf{E}[X_n X_m] \to C$$

as $n, m \to \infty$ independently and C is a constant.

Using this result show the following:

Let $\{X_n\}$ be the discrete-time Gauss Markov process defined by:

$$X_{n+1} = aX_n + bw_n$$

where $X_0 \sim N(0, \sigma^2)$ and $\{w_n\}$ is an i.i.d. N(0, 1) sequence independent of X_0 . Define $R_k = E[X_k^2]$.

If a > 1 show that $\frac{X_n}{a^n}$ converges in the mean square.

4. The interval [0,1] is partitioned into sub-intervals of length p_1, p_2, \ldots, p_n with $\sum_{i=1}^n p_i = 1$. The entropy of this partition is defined as:

$$h = -\sum_{i=1}^{n} p_i \log p_i$$

Let $\{X_i\}$ be i.i.d U[0,1] (uniform) random variables. Let $Z_m(i)$ denote the number of X_1, \ldots, X_m which lie in the ith. interval of the partition. Show that:

$$R_m = \prod_{i=1}^n p_i^{Z_m(i)}$$

satisfies:

$$\frac{\log R_m}{m} \to -h \ a.s \ as \ m \to \infty$$

.

- 5. Test whether each of these functions can be the covariance function of some w.s.s. process.
 - (a) R(t,s) = 1 |t-s|, $0 \le |t-s| \le 1$ and R(t,s) = 0 otherwise.
 - (b) $R(t,s) = e^{-a|t-s|}, -\infty < t, s < \infty$
 - (c) R(t,s) = !, $0 \le |t-s| \le 1$ and R(t,s) = 0 otherwise.
- 6. Let R(t) be the covariance of a w.s.s. process and $\int_{-\infty}^{\infty} |R(t)| dt < \infty$.

Define:

$$R_T(t) = R(t)\mathbf{1}_{[|t| < T}$$

i.e. we truncate the covariance to a finite interval. Show that $R_T(t)$ need not define a covariance function.

Hint: Consider $R_T(t) = 1, |t| \le T$ and $R_T(t) = 1 - \frac{|t|}{T}$

What this means that correlations cannot vanish abruptly.

7. Show that the following function cannot be the covariance function of any discrete-time process:

$$R(n) = \pi n = 0$$

$$= 2 n = \pm 5$$

$$= 3 n = \pm 15$$

$$= 0 \text{ for all other } n$$

- 8. Show that if $R(t,s), -\infty < t, s < \infty$ is a covariance function so is aR(at,as) for any a > 0.
- 9. Let $\{W_t\}$ be a standard Brownian motion. Let:

$$X(t) = \sin(2\pi f t + W_t), t > 0$$

Calculate the mean and covariance of X(t).

Show that:

$$\lim_{t \to \infty} E[X(t)] = 0$$

$$\lim_{T \to \infty} R(T, T+t) = \frac{\cos(2\pi f t)}{2} e^{-\frac{|t|}{2}}$$

or the process is asymptotically w.s.s.

10. A stochastic process is called lognormal if it is of the form:

$$Y(t) = e^{X(t)}, -\infty < t < \infty$$

where X(t) is a Gaussian process with mean m and covariance $R(\tau) = cov[X(t)X(t+\tau)]$. Find the mean and covariance of y(t).