
Chapter 4: Markov Chains

Markov chains and processes are fundamental modeling tools in applications. The reason for
their use is that they natural ways of introducing dependence in a stochastic process and thus
more general. Moreover the analysis of these processes is often very tractable. But perhaps an
overwhelming importance of such processes is that they can quite accurately model a wide variety
of physical phenomena. They play an essential role in modeling telecommunication systems, service
systems, and even signal processing applications. In this chapter we will focus on the discrete-time,
discrete-valued case, that leads to the appellation Markov chains.

1 Introduction and preliminaries

We restrict ourselves to the discrete-time case. Markov chains (M.C) can be seen first attempt to
impose a structure of dependence in a sequence of random variables that is rich enough to model
many observed phenomena and yet leads to a tractable structure from which we can perform cal-
culations. Supose we had a sequence of r.v.’s {Xi} and we know say X5, if the X ′is are independent
then this information would say nothing about a future value , say X10, other than the a priori
assumptions that we have on their distribution. O the other hand if they were dependent, unless
we precisely specify how the probability distributions at one time depend on the distributions at
other times there is very little we could do because we know to specify a stochastic process we need
to specify the joint distributions. Markov chains (or Markov processes in general) are stochastic
processes whose future evolution depends only on its current value and not how it reached there.
We formalize this idea below.

Definition 1.1. Let {Xn} be a discrete-line stochastic process which takes its values in a space E.
Let A ⊂ E. If

P{Xn+1 ∈ A|Xo, X1, . . . Xn} = P{Xn+1 ∈ A | Xn}

then {Xn} is said to be a discrete-time Markov process.
More generally

P{Xn+1 ∈ A |FXn } = P{Xn+1 ∈ A |Xn}

where FXn = σ{Xu, u ≤ n} the sigma-field of all events generated by the process {Xk} up to n.

When
E = {0, 1, . . . , }

i.e., a countable set then {Xn} is said to be a Markov chain.

From now on we will always assume E to be a finite or countable (discrete) set. E is said to be
the state-space of the Markov chain.

From the definition of a Markov chain it is easy to see that if

A ⊂ {X0 . . . Xn−1} , B ⊂ {Xn+1 , . . .}

then
P(A ∩B|Xn) = P(A|Xn) P (B|Xn)
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Let denote Fn = σ{Xk, k ≤ n} and Fn = σ{Xk,K > n} Then more generally if A ∈ Fm, B ∈ Fp
and m < n < p then:

P(A
⋂
B|σ(xn)) = P(A|σ(Xn))P(B|σ(Xn))

In other words, for any m ≤ n− 1, p ≥ n+ 1

P{Xm = i,Xp = j|Xn = k} = P{Xm = i|Xn = k} P{Xp = j|Xn = k}

i.e., if {Xn} is a Markov chain then the future (represented by the process at times > n) and the
past (represented by the process at times < n) are conditionally independent given the process at
time n given by Xn. Conditional independence is actually a better way of defining the Markov
property since it extends readily to the case when the index set is not necessarily the set of integers
but of higher dimension.

From Chapter 1., we know that if we define events An = {Xn ≤ an}, then if {An}’s are Marko-
vian then the P(An) is determined from the knowledge of P(A0) and the conditional probabilities
P(Ak+1|Ak). Thus if {Xn} is Markov, what we really mean is that the events generated by {Xn}
have the Markovian property, which is equivalent to the distribution at any time is completely
determined by its initial distribution π(0)(i) = P{X0 = i} and the conditional distributions
P{Xk+1 = j|Xk = i} for k = 1, 2, . . . n− 1.

The conditional probability

P{Xk+1 = j|Xk = i} = Pij(k)

is called the transition probability of the Markov chain.

If Pij(k) does not depend on the time {k} then we say that the Markov chain is time-homogeneous
or simply homogeneous.

For example
P{xk+1, = j/xk = i} = Pij

Example 1: Consider the following Markov Chain defined as E = {0, 1, 2} with

P = {Pij} =

 1 0 0
0.5 0 0.5
2
3 0 1

3


We can pictorially represent the chain as follows:

In words: If at time 0, the process starts in state 0 then it will stay in state 0 for all time since
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the transition probability P0j = 0 if j 6= 0.

If the process starts in state 1 then with probability 1/2 it will be in either (0) or (2) at the next
instant. In other words, if we observe the chain for a long time the state 1 will only be observed if
the chain starts there, and over the long run it will be in state 0. Since once it goes to 0 it stays there.

In the sequel we will see that the states {0}, {1} and {2} have some special properties. We will
focus our attention on studying the long-run behavior of Markov chains. In fact, it will be seen
that the entire structure is governed by P the matrix of the transition probabilities.

In the following we will use the following notation.

We will denote a Markov chain by (E,P ) where E denotes the state space
and P the transition probability matrix.

Let us now introduce some rotation which will be used throughout our study of Markov chains.

Pij = P{Xk+1 = j|Xk = i}

P
(k)
ij = P{Xk = j|X0 = i}, i.e., the conditional probability that the chain is in state j after

k-transitions given that it starts in state i.

π
(k)
j = P{Xk = j}

and
P = {Pij}i, j ∈ E

We now state the first fundamental result which is obeyed by the conditional probabilities of a
Markov chain. The equation is called the Chapman Kolmogorov equation. We saw (in Chapter 2)
that any Markov chain must obey this equation.

Theorem 1.1. (Chapman-Kolmogorov Equations)

P
(k+l)
ij =

∑
α ∈ E

P
(k)
iα P

(l)
αj

Proof

P{Xk+l = j/X0 = i} =
∑
α

P{Xk+1 = j, Xk = α|X0 = i}

(Conditional Probabilities) =
∑
α∈E

P{Xk+1 = j|Xk = α, X0 = i}P{Xk = α|X0 = i}

(Markov Property) =
∑
α∈E

P{Xk+1 = j|Xk = α}P{Xk = α|X0 = i}

=
∑
α∈E

P
(k)
iα P

(l)
αj
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In the above proof we used the fact that the chain is homogeneous. Another way of stating this
result is in matrix notation.

Note that by definition
Pnij = (Pn)ij

Hence
Pk+l = PkPl .

There are two sub-cases of the Chapman-Kolmogorov equation that are important.

P
(k+1)
ij =

∑
α∈E PiαP

(k)
αj : Backward equation

P
(k+1)
ij =

∑
α∈E P

(k)
iα Pαj : Forward equation

What they state is that to reach the state j after (k+ 1) steps, the chain starts in state i and goes
to state α after the first transition and then goes to j from state α after another k transitions or
vice versa.

In a similar vein,

π
(k+1)
j =

∑
α∈E παP

(k)
αj

π
(k+i)
j =

∑
α π

(k)
α P

(i)
αj

Note that by definition of the transition probabilities∑
j∈E

P
(n)
ij = 1 for all n.

Example 2: Consider a homogeneous M.C. (E P )

P =

[
P00 P01

P10 P11

]
Then it is easy to calculate the powers of P as

P2 =

 P 2
00 + P01P10 P01(P00 + P11)

P10(P00 + P11) P 2
11 + P01P10


and by induction

Pn =

(
1

2− P00 − P11

)(
1− P11 1− P00

1− P11 1− P00

)

+
(P00 + P11 − 1)n

2− P00 − P11

(
1− P00 −(1− P00)
−(1− P11) 1− P11

)
under the hypothesis |1− P00 − P11| < 1.
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Hence if P00 , P11 6= 1 then the hypothesis is always satisfied and

lim
n→∞

Pn =
1

2− P00 − P11

 1− P11 1− P00

1− P11 1− P00


which means

lim
n→∞

P{Xn = 1|X0 = 0} =
1− P00

2− P00 − P00
= P{Xn = 1/X0 = 1}

etc. or the chain has the same limiting probabilities irrespective of the initial state i.e., it “for-
gets” which state it started in.

Another interesting property can also be seen:

Note that P ∗ = limn→α P
n has columns with identical elements. Also P ∗ = PP∗ = P ∗P .

The elements of the columns of P ∗ are so-called stationary probabilities of the chain that we will
study in detail.

Definition 1.2. The vector π = {πi}i∈E is said to be the stationary (or invariant) distribution
of the chain if

π = π P

or
πj =

∑
i∈E

πi Pij

The reason that the vector {π} is called the stationary distribution can be seen from the fol-
lowing.

Suppose we start the chain with initial distribution

π0i = πi = P{x0 = i}.

Then from the Chapman - Kolmogorov equation

π
(n+1)
j =

∑
i

πiP
(n)
ij

or in matrix form (
π(n+1)

)
j

= (π Pn)j

=
(
π Pn−1

)
j

= · · · = (πP )j = πj

in other words the probability of being in a given state j at any time remains the same implying
that the distribution is time-invariant, or the process {Xn} is stationary.
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To show that {Xn} is stationary if it is started with an initial distribution π we need to show
the following property:

P(Xm1 = i1, Xm2 = i2, · · · , Xmp = ip) = P(XN+m1 = i1, XN+m2 = i2, · · · , XN+mp = ip)

for all integers N , p, m1,m2, . . . ,mp and i1, i2, . . . , ip. This follows readily from the fact that the
chain is homogeneous and P(Xn = i1) = πi1 for all n from above. Indeed by the multiplication rule

we have both the lhs and the rhs given by: πi1P
(m2−m1)
i1i2

· · ·P (mp−mp−1)
ip−1ip

showing that the process
is stationary.

Through the examples we have considered we have already seen two important aspects of
Markov chains: how the structure of the matrix P determines the behavior of the chain both from
the time evolution as well as the existence of stationary distributions.

We will now study these issues in greater generality.

2 Markov Chains - Finite state space

Let us first begin by considering the finite-state case. These are referred to as finite-state Markov
chains. Here |E| < ∞ (cardinality of the state space is finite or the chain can only take a finite
number of values).

Theorem 2.1. (Ergodicity of Markov chain, |E| <∞)

Let (E,P ) denote a finite state Markov chain. Let |E| = N + 1.

1. If

∃n0 s.t.

min
i,j

P
(n0)
ij > 0

then,

∃ (π0, πj , . . . πN ) , s.t. πi > 0,
N∑
i=0

πi = 1

and
lim
n→∞

P
(n)
ij → πj ∀ i ∈ E.

2. Conversely if ∃ πi satisfying the properties in (a) then

∃ n0 s.t. min
i,j

P
(n0)
ij > 0

3.

πj =

N∑
k = 0

πk Pkj
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Proof: Let

m
(n)
j = mini P

(n)
ij and

M
(n)
j = maxi P

(n)
ij .

By definition

m
(n)
j ≤ M

(n)
j .

Since
P

(n+1)
ij =

∑
α

Piα P
(n)
αj

we have
m

(n+1)
j ≥ m

(n)
j and M

(n+1)
j ≤ M

(n)
j .

Since
m

(n+1)
j = mini P

(n+1)
ij =

≥
∑

α Piα minα P
(n)
αj

= m
(n)
j

hence, m
(n+1)
j ≥ m

(n)
j and the result M

(n+1)
j ≥ M

(n)
j follows similarly. This implies that m

(n)
j is

a monotone non-decreasing sequence and M
(n)
j is a monotone non-increasing sequence.

Noting that m
(n)
j ≤ P

(n)
ij , if we show that M

(n)
j − m

(n)
j → 0 ∞ n → ∆ then it will imply

that limn → ∞ P
(n)
ij will exist.

Let
ε = min

i,j
P

(n0)
ij > 0.

Then
P

(n0+n)
ij =

∑
α P

(n0)
iα P

(n)
αj

=
∑

α

[
P

(n0)
iα − ε P

(n)
jα

]
P

(n)
αj + ε

∑
α P

(n)
jα P

(n)
αj

=
∑

α

[
P

(n0)
iα − ε P

(n)
jα

]
P

(n)
α,j + ε P

2n)
jj

But since P
(n0)
iα > ε,

⇒ P
(n0+n)
ij ≥ m(n)

j (1 − ε) + ε P
(2n)
jj .

and hence
m

(n0+n)
j ≥ m

(n)
j (1− ε) + ε P

(2n)
jj .

In a similar way

M
(n0+n)
j ≤ M

(n)
j (1− ε) + εP

(2n)
jj .

Hence
M

(n0+n)
j − m

(n0+n)
j ≤ (1− ε)

(
M

(n)
j − m(n)

)
.
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and consequently

M
(kn0+n)
j − m

(kn0+n)
j ≤ (1 − ε)k

(
M

(n)
j − m

(n)
j

)
→ 0 ∞ k → ∞.

Hence the subsequence M
(kn0+n)
j −m(kn0+n)

j converges to 0. But M
(n)
j −m(n)

j is monotonic which

implies that M
(n)
j −m(n)

j → 0 as n→∞.
Define

πj = lim
n→∞

M
(n)
j = lim

n→∞
m

(n)
j

Then, since m
(n)
j ≤ πj ≤M (n)

j we have:∣∣∣P (n)
ij − πj

∣∣∣ ≤ M
(n)
j − m

(n)
j ≤ (1 − ε)

( n
n0

)−1

for n ≥ n0 which implies that P
(n)
ij → πj ∞ n → ∞ geometrically. Since

m
(n)
j ≥ m

(n0)
j ≥ ε > 0 ⇒ πj > 0.

The proofs of b) and c) follow in a similar way.

A final remark is that the vector π is unique. Let us show this.

Let π be another stationary solution, for example

πj =
∑
α

πα Pαj =
∑
α

πα P
(n)
αj .

Since P
(n)
αj → πj we have

πj =
∑
α

πα lim
n→∞

Pij =
∑
α

πα πj = πj

Let us conclude that the theorem is a sufficiency theorem, i.e., there may exist stationary distribu-

tions even though there maybe no n0 s.t. minij P
(n0)
ij 0.

Here is an example: Let

P =

(
0 1
1 0

)
Then

Pn =

(
0 1
1 0

)
if n is odd

=

(
1 0
0 1

)
if n is even.

Hence
min
ij

P
(n)
ij = 0 ∀ n.
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But

π =

(
1

2
,

1

2

)
satisfies

πi =
∑
α

πα Pαi and moreover

π0 =
1 − P11

2 − P00 − P11
π1 =

1 − P00

2 − P00 − P11

This chain is however not ergodic. We will see what this means a little later on.

2.1 Ergodicity and Rate of Convergence

Suppose mini,j Pij = ε > 0. From the proof of the main result above we have

|π(n)i − πi| ≤ (1 − ε)n ∀ i

In fact it can also be shown that:∑
j

|P (n)
ij − πj | ≤

∑
j

|π(n)j − πj | < 2(1 − ε)n

Here what this result states is that the transient distribution π
(n)
j → πj geometrically fast since

1 − ε = ρ < 1.

Remark: The quantity
∑

j |π
(n)
j − πj | is referred to as the total variation norm. It measures how

different π(n) and π are. This is a useful metric between two probability measures defined on the
same space. This property is often called geometric ergodicity of Markov chains.

Let us see what this has to do with ergodicity. Recall we usually use the term ergodicity to
mean that the SLLN holds for any bounded or integrable function of the process,. More precisely,
we use the trem ergodic to imply:

lim
M→∞

1

M

M∑
n=1

f((Xn) = E[f(X0)]

where the expectation on the r.h.s is taken under the stationary distribution of the process. Lett
is see how the geometric convergence implies this. Note in this finite state setting it is enough
to show that the process {Xn} satisfies the SLLN. Recall, a stationary process {Xn} satisfies the
SLLN if

∑∞
k=0 |R(k)| < ∞ where R(k) is the covariance. Without loss of generality let us take

mini,j Pij = ε > 0.
Let us first compute:

R(n, n+m) = E[XnXn+m]− E[Xn]E[Xn+m]

=
∑
i∈E

∑
j∈E

ijπ
(n)
i P

(m)
ij −

∑
i∈E

iπ
(n)
i

∑
j∈E

jπ
(n+m)
j

Now taking limits as n→∞ and noting that under the conditions of the Theorem π
(n)
j → πj we have

R(n, n+m) =
∑

i,j∈E ijπiP
(m)
ij − (E[X0])

2 and the r.h.s is just a function of m so limn→∞R(n, n+
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m) → R(m) (say). Thus it is sufficient to establish that
∑∞

k=0 |R(k)| < ∞. Now using the fact
that |E| = N + 1 <∞ we have

∞∑
k=0

|R(k)| ≤
∞∑
k=1

∑
i,j∈E

iπij|P (k)
ij − πj |

= (N + 1)2
∞∑
k=0

(1− ε)k <∞

Therefore {Xn} and hence {f(Xn)} for all bounded functions f(.) will obey the SLLN estab-
lishing ergodicity.

Let us now study some further probabilistic characteristics of Markov chains.

3 Strong Markov Property and recurrence times

So far we have only considered the case where |E| < ∞. For this case we saw that if ∃ a n0 such

that minij P
(n0)
ij > 0 then P

(n)
ij → πi which does not depend on i the state the chain started

out in.
Our interest is develop results that are also valid when |E| = ∞ i.e., the M.C. can take a count-

able infinite number of values. In this case the simple argument to show that P
(n)
ij → πi cannot be

carried out since P will now be a matrix of infinite rows and columns, but since
∑

j∈E P
(n)
ij = 1 ∀ n

this will necessarily imply minij P
(n)
ij = 0 ∀ n, and so our previous arguments do not go through.

However all is not lost – we can show some interesting properties of the type above but for this we
need to undertake a more thorough study of the “structure” of the underlying chain.

Specifically in the case |E| = ∞ we will study the following issues:

1. Conditions when limits πj = limn→infty P
(n)
ij exist and are independent of i.

2. When π = (π0, πi, . . .) forms a probability distribution i.e., πi ≥ 0
∑

i∈E πi = 1.

3. Ergodicity i.e., πi > 0
∑

i∈E πi = 1 ,are unique and πm = limN→∞
1
N

∑N
i=1 1[Xi=m].

To do so we will begin with a description of the states of a Markov chain. The classification
will then enable us to conclude some general properties about states which are members of a class.

We will classify states according to two criteria:

1. Classification of states in terms of the arithmetic (or structural) properties of the transition

probabilities P
(n)
ij

2. Classification of states according to the limiting behavior of P
(n)
ij as n → ∞.

Let us begin by the study on the classification of the states of a M.C. based on the arithmetic

properties of P
(n)
ij .

Throughout the discussion we will assume that |E| = ∞ although this is not strictly necessary.
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Definition 3.1. A state i ∈ E is said to be inessential if, with positive probability it is possible
to escape from it in a finite number of transitions without ever returning to it, i.e., ∃ a m and

j s.t. P
(m)
ij > 0 but P

(n)
ji = 0 ∀ n and j.

Let us delete all inessential states from E. Then the remaining states are called essential. The
essential states have the property that the M.C. once it enters the essential states does not leave
them.

Let us now assume that E consists only of essential states.

Definition 3.2. We say that a state j is accessible form state i if ∃ m ≥ 0 s.t. P
(m)
ij > 0 (note

by definition P
(n)
ij = 1 if j = i , = 0 otherwise.

We denote this property by i → j. States i and j communicate if j → i (i.e. i is accessible
from j) and i → j. In this case we say i ↔ j.

The relation ↔ is symmetric and reflective i.e., if i ↔ j , j ↔ k then i ↔ k.

Consequently E separates into classes of disjoint sets Ei , E = ∪ Ei with the property that Ei
consists of states which will communicate with each other but not with Ej , j 6= i.

We say that E1, E2, . . . form indecomposable (or irreducible) classes (of communicating slides).

An example of this is a M.C. with the transition matrix.

P =

 P1 0 0
0 P2 0
0 0 P3


where Pi are state transition probability matrices of appropriate dimensions. In this case there are
3 communicating classes.

In such a case since the evolutions of states defined by Pi are not influenced by stats in Pj j 6= i,
the M.C. can be analyzed as 3 separate M.C.’s.

Definition 3.3. A M.C. is said to be indecomposable or irreducible if E consists of a single inde-
composable class (of communicating states).

Now let us restrict ourselves to a chain which is irreducible (has only one class of communicating
states). Even so, there can be a special structure associated with the class.

Consider for example a chain whose transition probability matrix is given by

P =


0 P1 0 0 0
0 0 P2 0 0
0 0 0 P3 0
0 0 0 0 P4

P5 0 0 0 0


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This chain is indecomposable but has the particular property that if the chain starts in the states
corresponding to the first submatrix (0) then it goes to states defined by P1 at the next transition
and so on. So the chain returns to a given set of states only after 5 transitions. This is a so-called
cyclic property associated with the states. We can hence sub-classify the states according to such
a structure. This is related to the period of a state which we now define formally below.

Definition 3.4. A state of j ∈ E is said to have a period d = d(j) if P
(n)
jj > 0 if n is a

multiple of a number d and d is the largest number satisfying the property n = md where m is an
integer.

In other words d is the GCD (greatest common divisor) of n for which P
(n)
jj > 0. If P

(n)
jj = 0 ∀ n ≥ 1

then we put d = 0.

Definition 3.5. If d(j) = 1 then the state is said to be a periodic.

We will now show that all the states of a single indecomposable chain must have the same
period and hence d = d(j) = d(i) and so d is called the period of a class.

Lemma 3.1. All states in a single indecomposable class of communicating states have the same
period.

Proof: Without loss of generality let E be indecomposable.

If i, j ∈ E, then ∃ k and i > 0 s.t.

P
(k)
ij > 0, and P

(l)
ji > 0.

Hence P
(k+l)
ii ≥ P

(k)
ij P

(l)
ji > 0 ⇒ since (k + l) must be divisible by d(i). Suppose n > 0

but not divisible by d(i). Then n + k + l is not divisible by d(i), hence P
(k+l+n)
ii = 0. But since

P
(k+l+n)
ii ≥ P

(k)
ij P

(n)
jj P

(l)
ji > 0 if n is divisible by d(j). Hence k + l + n must be divisible by

d(i) ⇒ n must be divisible by d(i). This ⇒ d(i) ≤ d(j). By symmetry d(j) ≤ d(i). Hence
d(i) = d(j).

Definition 3.6. A M.C. is said to be a periodic if it is irreducible and the period of the states is
1.

We will assume that the M.C. is irreducible and a periodic from now on.

If d > 1 then the class of states can be subdivided into cyclic subclasses as we saw in our
example where d = 5.

To show this select any state i ∈ E and introduce the following subclasses.
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C0 =
{
j ∈ E : P

(n)
ij > 0 ⇒ n = 0 mod(d)

}
C0 =

{
j ∈ E : P

(n)
ij > 0 ⇒ n = 1 mod(d)

}
...

Cd−1 =
{
j ∈ E : P

(n)
ij > 0 ⇒ n : (d− 1) mod(d)

}
Then it clearly follows that

E = C0 + C1 + . . . + Cd−1.

In particular if i ∈ Cp then necessarily j ∈ Cp+1 if Pij > 0. For example, if Pij > 0 then
j ∈ (P + 1) mod(d).

Let n be such that P
(n)
i0i

> 0. Then since i ∈ Cp n = md+ p or n = p mod(d). Therefore
n+ 1 = (p+ 1) mod(d) and hence j ∈ (P + 1) mod(d) or j ∈ CP+1.

Finally let us consider a subclass, say Cp. Then the chain will enter class Cp at times given by
n = p mod(d) if it starts out in C0 at time 0.

Consequently if i, j j ∈ Cp then P dij > 0 and thus the chain viewed at instants 0, d, 2d, . . .

will be a periodic with transition matrix P = P dij which means that without loss of generality we
can assume that a M.C. is irreducible and a periodic.

Let us summarize the classification so far:

Classification of states in terms of arithmetic properties of P
(n)
ij .
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We will now study the second set of classification of states in terms of the asymptotic properties

of P
(n)
ij as n → ∞.

Throughout we will assume that the M.C. is irreducible and a periodic.

3.1 Classification based on asymptotic properties of P
(n)
ij

Before we begin our study of the classification based on the asymptotic properties, we will discuss
the issue of the strong Markov property.

The strong Markov property implies that a M.C. continues to inherit its Markov structure when
viewed at instants beyond a random time instant.

Of course the above is a very imprecise statement and so let us try to understand what it means.

Let us begin by considering a simple example.

Let

E = {0, 1} P =

[
P00 P01

P10 P11

]
with P00 > P11 > 0 and P00 < 1, P11 < 1.

Let us define the following random time τ(ω).

τ = min {n > 0 : Xn+1 = 0}. For example, τ is the time instant before the time that it

first reaches 0. Then for any initial distribution π(0) =
(
π
(0)
0 , π

(0)
1

)
.

P {Xτ+1 = 0 | Xm, m < τ, |Xτ =1} = 1 6= P10. What this means is that the Markov
transition structure is not inherited by {Xn} after the random time τ .

A natural question is when does P {Xτ+1 = j Xτ=i} = Pij if τ is random? It turns out it
holds when τ is a so-called Markov or stopping time which we define below.

Definition 3.7. A random τ is said to be a Markov or stopping time if the event {τ = n} can be
completely determined by knowing {X0, X1, . . . Xn}, for example

P {τ = n /Xm, m ≥ 0} = P {τ = n/Xm, m ≤ n}

Example: Let Xn be a M.C. Define

τ = min {n > 0 : Xn = i | X0 = i} .

Clearly by observing {Xn} we can determine whether τ defined as above is a stopping line.

As an example of τ which is not a stopping line is the case we considered earlier because to
determine τ we need to know the future value of the process beyond τ .

We now state the strong Markov property and give a proof of it.
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Proposition 3.1. (Strong MarkovProperty)

Let {Xn} be a homogeneous M.C. on (E, P )

1. The processes Xn before and after τ are independent given Xτ .

2. P {Xτ+k11 = j / Xτ+k = i} = Pij
(i.e. the process after τ is an M.C. with transition probability P ).

Proof

1. To show (a) and (b) it is enough to show

P {Xτ+1 = j / Xm ; m < τ, Xτ} = P {Xτ+1 = j / xτ = } = Pij

for all i, j ∈ E.

Now (with abusage of notation)

P {Xτ+1 = j / Xm, m < τ, Xτ = i} =
{PXτ+1 = j, Xτ = i, Xm, m τ}

P {Xm, m < τ, Xτ = i}

The numerator is just

P{Xτ+1 = j X2 = i, Xm, m < τ}
=

∑
γ≥0

P{Xγ+1 = j, Xγ = i, Xm, m < γ, τ = γ}

Now we will use the following result that follows from the definition of conditional probabili-
ties:

P (A, B, C) = P (A) P (B/A) P (C/AB).

to write∑
γ>τ0

P{Xγ+1 = j, Xγ = i, Xm,m < γ, τ = γ}

=
∑
γ

P{Xγ = i, Xm < τ}P{Xγk = j / Xγ = i, Xm, m < γ}

· P{τ = γ / Xτ = i, Xm, m < γ, Xγ+1 = j}

Now {Xn} is Markov,therefore

P{Xγ+1 = j /Xγ = i,Xm, m < γ} = P{Xγ+1 = j / Xγ=1} = Pij

and since τ is a stopping time

P{τ = γ / Xγ = i, Xm, m < γ, Xγ+‘ = j} = P{τ = γ / Xγ = i, Xm m < γ}
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(i.e., it does not depend on Xγ+k k ≥ 1} so the numerator is just

= Pij P{Xτ = i, Xm,m < τ}

proving the statement

P{Xτ+1 = j / Xτ = i, Xm, m < τ} = Pij

On the other hand

P{Xτ+1 = j / Xτ = i} =
∑
γ≥0

P{Xγ+1 = j, Xγ = i, τ = γ}
P{Xτ = i}

=
∑
γ

P{Xγ = i} P{Xγ+1 = j / Xγ = i} P{τ = γ / Xγ = i, Xm}

= Pij

showing that

P{Xτ+1 = j / Xτ = i, Xm ; m < τ}
= P{Xτ+1 = j / Xτ=i} = Pij

or {Xτ+k} is Markov for k ≥ 0 with the same transition matrix P .

Examples of stopping times

1. All constant (non-random) times are stopping times.

2. First entrance times such as

τF = inf
n
{n ≥ 0 : Xn ∈ F}

An example of a random time which is not a stopping time is a last exit time of the type

τE : sup
n
{Xn ∈ E / X0 ∈ E}

Stopping times play a very important role in the analysis of Markov chains. They also play an
important role in some practical situations where we can only observe certain transitions such as
the so-called M.C. “watched” in a set which is the following.

Define
τ0 = inf

n
{n ≥ 0 : Xn ∈ Y }

and recursive by defining
τn+1 = inf {M > τn | Xm ∈ Y }

Then Yn = Xτn is a Markov chain (why?) since {τn}’s are stopping times.

We will re-visit this example in more detail a little bit later. Let us now focus on first estab-
lishing the long-term behavior of M.C.
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Define
τi = {n ≥ 1 : Xn = i}

τi: First return time to state i and τi = ∞ if Xn 6= i ∀ n.

Note
{τi = k} = {X1 = 6= i, X2 6= i, . . . , Xk−1 =6= i, Xk = i}

so τi is a stopping time.

Define fij = P{Tj < ∞ | X0 = i}

fij denotes the probability the process starting in i enters state j at some finite time.

Let

Ni =
∞∑
1

1{Xn=i}

Ni just counts the number of times the chain visits state i in an infinite sequence of moves

Define fkij = P{τj = k | X0 = i}

Then we have the following result which is a direct consequence of the strong Markov property.

Lemma 3.2.

P
(n)
ij =

n∑
k=1

f
(k)
ij P

(n−k)
jj =

n−1∑
k=0

P
(k)
ii f

(n−k)
ij with Pii(0) = 1.

Note

P
(n)
ij = P{Xn = j | X0 = i} =

∑
1≤K≤n

P{Xn = j, τ = k / X0 = i}

=
∑

1≤k≤n
P{Xτ+n−k = j, τ = k | X0 = i}

=
∑

1≤k≤n
P{Xτ+n−k = j / τ = k, X0 = i} P{τ = k | X0 = i}

But

{τ = k} = {X1 6= j, X2 6= j, . . . Xk−1 6= j, Xk = j}

=
∑

1≤K≤n
P

(n−k)
jj P{τ = k / X0 = i} =

n∑
1

f
(k)
ij P

(n−k
jj

from the Markov property.
On the other hand,

P{Xn = j /X0 = i} =
∑

1≤K≤n−1
P{Xn = j, τ = n − K | X0 = i}
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from which the other result follows.

This result allows us to compute the transition probability from i to j in n-steps from the first
return time probability.

The return time probability plays an important role in determining the long-term behavior of
M.C.’s.

Lemma 3.3. Let Ni be the number of visits to state i defined earlier.
Then

P {Ni = k | X0 = j} = fji f
k−1
ii (1 − fii) if k ≥ 1

= 1 − fji if k = 0

Proof: For k = 0 this is just the definition of fji.

Let us show the proof by induction. Suppose it is true for k. Now

P {Ni > k| X0 = j} = 1 −
k∑
r=0

P {Ni = r}

= fji f
r
ii

Let τm denote the mth return time.

P{Ni = m+ 1 |X0 = j} = P{Ni = m + 1, Xτm+1 = i | X0 = j}

= P{τm+2 − τm+1 = ∞, Xτm+1 = i | X0 = j}

= P{τm+2 − τm+1 = ∞ | Xτm+1 = i, X0 = i} {Xτm+1 = i | Xi=j}

= P{τm+2 − τm+1 = ∞ | Xτm+1 = i} P{Xτm+1 = i / Xm = j}

= P{Ti = ∞ | X0 = i} P
(
Xτm+1 = i | X0 = j

)
= (1 − fii) fmii fji

Note P{Xτm+1 = i | X0 = j} = P{Ni > m | X0 = j} and therefore the proof is done.

Noting that
fii = P{τi < ∞ |X0 = i}

and hence
fii ∈ (0, 1).
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Now
P{Ni = k | X0 = i} = fkii(1 − fii).

Let
Pi(Ni = k) = P (Ni = k | X0 = i).

Therefore if fii = 1 then
P{Ni = k | X0 = i} = 0 ∀K.

Hence
{Ni = ∞ | X0 = i} = 1.

On the other hand if fii < 1 then

E [Ni | X0 = i] =

∞∑
k=0

k f
(k)
ii (1 − fii)

=
fii

1 − fii
<∞

⇒ Pi{Ni = ∞} = 0.

So
Pi{Ni = ∞} = 1 ⇔ fii = 1

It also follows that:
fii < 1 ⇔ Ei[Ni] < ∞.

These two quantities define a class of properties called recurrence associated with the states of a
M.C.

Definition 3.8. A state i is said to be recurrent if Ni =∞ a.s.. Let Ti be the first return to i. If
Ei[Ti] < ∞ the the state is said to be positive recurrent while if Ei[Ti] = ∞ the i is said to be null
recurrent. A state that is not recurrent is said to be transient.

Let us see one of the implications of the property Ni = ∞ a.s. Define τ1 = Ti and

τn+1 = inf
m
{m > τn : |Xm = i}

The {τn}’s are the successive visits to state i. Define Sn = τn+1 − τn.

We can then show the following.

Proposition 3.2. The sequence {Sn} is i.i.d and moreover the pieces of the trajectory

{Xτk −Xτk−1
, Xτk+1

−Xτk , · · · }

are independent and identically distributed.
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Proof This is just a consequence of the strong Markov property. This is because the process
after τk and the process before τk are independent. Furthermore since τk are the return times to
the state i. We know Xτk+n

has the same distribution as Xn given X0 = i by the strong Markov
property. Also Sk ≡ T0 in distribution since the chain starts off afresh in state i.

Remark 3.1. Such pieces {Xτk − Xτk−1
, Xτk+1

− Xτk , . . .} are called regenerative cycles and τk
the regeneration times or epochs.

Remark 3.2. A consequence of these results is that if a M.C. is irreducible (indecomposable) (all
states form a single communicating class), then all states are either transient or recurrent.

Later on we will show that positive and null recurrence i.e., when the return times have finite
mean or not, are also a class property.

The next result establishes the limiting behavior of P
(n)
ij when the states are transient.

Lemma 3.4. If j is transient then for every i

∞∑
n−1

P
(n)
ij <∞

and hence limn→∞ P
(n)
ij = 0.

Proof:
∞∑
n=1

P
(n)
ij = Ei[Nj ]

and so the sum being finite means that on the average the chain visits j only a finite number of
times.

Now

∞∑
n=1

P
(n)
ij =

∞∑
n=1

n∑
k=1

P{Tj = k | X0 = i} P (n−k)
jj

=
∞∑
k=1

P (Tj = k | X0 = i)
∞∑
1

P
(m)
jj

= fij

∞∑
1

P
(n)
jj < ∞

since j is transient. Since 0 ≤ fij ≤ 1. Hence

∞∑
n=1

P
(m)
ij < ∞ ⇒ P

(n)
ij → 0

as n → ∞ if j is transient.

Thus, with this partition of states into recurrent or transient we now show that recurrent
states can be further decomposed into those where the expected return time is finite called positive
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recurrent and those whose expected return time is infinite , called null recurrent. Positive or null
recurrence are closely associated with ergodicity of a MC.

The following figure summarizes a classification of states based on the temporal behavior.

Classification of states in terms of temporal properties of a MC .

4 Classification of state of M.C. based on temporal behavior

We saw that recurrence is a property which is dependent on whether fii is 1 or < 1 and
fii = P{Ti < ∞ | Xm = i}. This is usually not easy to calculate so we seek an alterna-
tive criterion.

To do so let us define the so called potential matrix

G =
∞∑
n=0

P (m)

Then

gij =

∞∑
n=0

P
(n)
ij =

∞∑
n=0

P (Xn = j | X0 = i)

= Ei

[ ∞∑
0

1{Xn=j}

]

which is just the average number of visits to j starting from state i.

We can then state the following proposition.
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Proposition 4.1. A state i ∈ E is recurrent if

∞∑
n=0

P
(n)
ii = ∞.

Proof: This is just equivalent to stating Ei[Ni] =∞ or the fact that the chain visits i an infinite
number of times a.s..

With this equivalent condition we can now show that recurrence is a class property i.e., if i ⇔ j
(they belong to the same class) and i is recurrent then j is recurrent.

Proposition 4.2. Let j be recurrent and i⇔ j, then i is recurrent.

Proof: If i ⇔ j ∃ s, t > 0 such that

P
(j)
i > 0, P

(t)
ji > 0

Hence since
P

(s+n+t)
ii ≥ P

(s)
ij P

(n)
jj P

(t)
ji

so if ∑
P

(n)
jj ≥ ∞ ⇒

∑
P

(n)
ii = ∞ ⇒ i

is recurrent.

Reversing the arguments shows the reverse implication.

4.1 Recurrence and Invariant Measures

As we have seen if a M.C. is irreducible then either all states are recurrent or transient. Let us now
study conditions for recurrence without calculating fii.

To do so we now introduce the notion of invariant measures. Invariant measures extend the
notion of stationary distributions – M.C. can have invariant measures even when no stationary
distribution exists. an example of such a case is a M.C. we have seen where

P =

(
0 1
1 0

)
.

Hence (12 ,
1
2) is an invariant measure.

Let us now define it formally:

Definition 4.1. A non-null vector µ = {µi, i ∈ E} is said to be an invariant measure for
Xn if µ ≥ 0 and µ = µP . i.e.,

µi =
∑
j∈E

µj Pji
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An invariant measure is said to be a stationary measure if
∑

i µi < ∞. In particular we can
define the stationary distribution as

πi =
µi∑

i ∈ E µi

in this case.
Let us now define a canonical invariant measure for Xn.

Proposition 4.3. Let P be the transition matrix of a M.C. {Xn}. Assume Xn is irreducible and
recurrent. Let 0 be an arbitrary state and T0 to be the return time to 0. For each i ∈ E, define

µi = E0

∑
n≥1

1I{Xn=i} 1I{n≤To}


(This is the expected number of visits to state i before returning to 0). Then for all i ∈ E

0 < µi < ∞

and µ = {µi} is an invariant measure of P .

Before we give the proof a few comments are in order.

Remark 4.1. Note by definition: µ0 = 1. Since for

n ∈ [1, T0] Xn = 0 if and only if n = T0.

Also since

∑
i∈E

∑
n≥1

1{Xn = i} 1{n≤T0} =
∑
n≥1

{∑
i∈E

1Xn=i} 1{n≤T0}

}
=

∑
n≥1

1{n≤T0} = T0. We have

∑
i∈E

µi = E0 [T0]

Proof: Let us first show that if µi is invariant then µi > 0.

Let µ = µP . Then iterating gives µ = µ Pn. So suppose µi = 0

Then
0 =

∑
j∈E

µj P
(n)
ji

Now since µ0 = 1 we have P
(n)
oi = 0. Hence 0 cannot communicate with i which contradicts the

hypothesis that the chain is irreducible.
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On the other hand suppose µi = ∞: Then

µ0 = 1 =
∑
j∈E

µj P
(n)
j0 ≥ µi P

(n)
i0

which can only happen if P
(n)
i0 = 0 ∀ n which once again contradicts the irreducibility hypothesis.

Hence 0 < µi < ∞ ∀ i ∈ E.

Let us know show that µi as defined in an invariant measure.

Then by definition of µi we have

µi =
∑
k≥1

G
(k)
0,i

where G
(k)
0,i = P(Xk = i, T0 > k|X0 = 0) Applying the result of Lemma 5.5 we obtain for all k ≥ 2

∞∑
2

G
(k)
0,i = µi − G

(1)
0,i =

∑
j 6=0

∞∑
k=2

G
(k−1)
0,j Pji

=
∑
j 6=0

µj Pji

Noting that by definition µ0 = 1, and G
(1)
0,i = P0i we see

µ = µP.

or µ is an invariant measure for P .

Remark 4.2. Note that in invariant measure is only defined up to a multiplicative factor. Let us
show this formally.

Proposition 4.4. An invariant measure of an irreducible stochastic matrix P is unique up to a
multiplicative constant.

Proof: Let y be a recurrent measure. Then we have seen that ∞ > yi > 0 ∀ i.

Define
qji =

yi
yj

Pij

Then ∑
i

qji =
1

yi

∑
i

yi Pij =
yi
yk

= 1

So Q = {qij} is < stochastic matrix with

q
(n)
ji =

yi
yi
P

(n)
ij

Since P is irreducible Q is irreducible.
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Also ∑
n≥0

qii(n) =
∑
n≥0

Pii(n).

So if
∑

Pii(n) ∞⇒
∑

q
(n)
ii = ∞ so Q. Let

Let g
(n)
ji = Prob {the chain defined by Q

returns for the first time to state i

at time n starting from j}

Then
g
(n+1)
i0 =

∑
j 6=0

qij g
(n)
j0 .

Hence
yi g

(n+1)
i0 =

∑
j 6=0

yj g
(n)
j0 Pji

and, in particular, noting

f
(n+1)
0i =

∑
j 6=0

g
(n)
0j Pji

we see that f
(n)
0i and yi g

(n)
i0 . Satisfy the same recurrence with f

(1)
0,i = yi g

(n)
i0 . Therefore we see

Xi =
yi
y0

is also the invariant distribution

⇒ Xi is obtained up to a multiplicative factor.

We can now state the Markov result for positive recurrence.

Theorem 4.1. An irreducible M.C. is positive recurrent if its invariant measures µ satisfy∑
i∈E

µi < ∞

Proof: The proof follows directly from the fact that∑
i

µi = E0 [T0] < ∞

Remark: Noting that

πj =
µj∑
µj

we see that πj when defined is unique since the multiplicative factors cancel out.

We state this as a theorem.

Theorem 4.2. An irreducible M.C. is positive recurrent if and only if ∃ a stationary distribution.
Moreover the stationary distribution is unique.
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Proof: The first part follows from the previous Theorem and the remark above.

Let π be the stationary distribution.

Then
π = i Pn

or
πi =

∑
j

πi P
(n)
ji

Now if i were transient then P
(n)
ji → 0 ∞ n→ 0 then Pi = 0. Since the chain is irreducible

then πi = 0 ∀i which contradicts
∑

πi = 1. Hence the chain is the recurrent. Uniqueness follows
from the argument in the remark.

Definition 4.2. An irreducible a periodic Markov chain that is recurrent is said to be ergodic.

Let us show that every finite state case, every homogeneous Markov chain that is irreducible is
necessarily positive recurrent.

The idea is the following.

If all states are transient then (suppose these are K + 1)

1 = lim
n→∞

K∑
j=0

P
(n)
ij =

K∑
j=0

lim
n→∞

P
(n)
ij = 0

which is a contradiction.

On the other hand if it is recurrent it possesses an invariant measure {µi} with 0 < µi < ∞.
So
∑K

0 µi < ∞ (finite sum) so the chain is positive recurrent.

We can now show the following result that shows the importance of the mean return time w.r.t.
the stationary distribution

Theorem 4.3. Let π be the unique stationary distribution of a +ve recurrent chain. Let Ti be the
return time to state i.

Then

πi =
1

Ei [Ti]

Proof: Since in the definition of µi we considered an arbitrary state 0 for which µ0 = 1, we
know

∑
µi < ∞ and

π =
µi∑
µj

Taking i = 0 we obtain

π0 =
1∑
i µi

=
1

E0 [T0]
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but 0 is an arbitrary state. Therefore

πi =
1

Ei [Ti]

Remark 4.3. Suppose the MC is stationary, define:

τ = min
n
{n ≥ 1 : Xn = X0}

the first return time to a given state. Suppose |E| = N <∞. Then:

E[τ ] =
∑
i

E[τ |X0 = i]πi =
∑
i

Ei[Ti]πi = N

since Ei[Ti] = 1
πi

. Hence if the cardinality of E is infinite then E[τ ] = ∞. Does this contradict
positive recurrence? It does not, since X0 can be any one of the states, all the statement says that
the MC cycles through all the states on average before returning to the state it started out in. If we
condition on a particular state the average return time is finite.

So far we have only discussed the positive recurrent case and the transient case. The null
recurrent case corresponds to the case when∑

i

µi = ∞.

In this case it can be shown that P
(n)
ij → 0 ∞ n → ∞ if j is null recurrent. The proof of this

is much more technical and so we approach it differently.

An alternate approach to showing conditions of positive recurrence and null recurrence is as
follows:

Recall

P
(n)
ij =

n∑
k=1

f
(k)
ij P

(n−k)
jj .

Now

lim
n→∞

P
(n)
ij = lim

n→∞

∞∑
k=1

f
(k)
ij P

(n−k)
jj

= fij lim
n−∞

P
(n)
jj (by monotone convergence)

Now if i ⇔ j then fij = 1. Therefore it is enough to show P
(n)
jj → 0. For this we use the

following result.

Lemma: Let

U0 = 1,
∞∑
k=1

fk = 1, f0 = 0

and
Un =

∑
k=1

fk Un−k
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Then

lim
n→∞

Un =
1∑∞

k=1 k fk

Proof: Take Z transforms on both sides

U(z) =

∞∑
0

Un z
n F (z) =

∞∑
1

fk z
k.

Then

U(Z) − 1 =
∞∑
1

Un z
n

Hence using the fact that U is a convolution of U with f

U(z) − 1 = F (z) U(z)

or

U(z) =
1

1− F (z)

The final value theorem for Z-transforms states that

lim
n→∞

Un = [1− z] U(z)|z=1.

Hence

lim
n−∞

Un =
1 − z

1 − F (z)
|Z=1

But

F (1) =
∞∑
k=1

fk = 1

so using L’Hopital’s rule rule.

lim
n−∞

Un =
−1

−F 1(z)
|z=1 =

1∑∞
K=1 K fK zK−1

|Z=1

=
1∑∞

k=1 k fk

Using this lemma write

Un = P
(n)
ji

fn = f
(n)
jj

we obtain

lim
n→∞

P
(n)
jj =

1∑∞
1 n f

(n)
jj

=
1

Ej [Tj ]

and so if j is null recursive Ej [Tj ] = ∞ so lim P
(n)
ij → 0. On the other hand if j is +ve recurrent

then
Ej [Tj ] < ∞
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then

lim
n → ∞

P
(n)
ij =

1

Ei [Tj ]
= πj

In the above result we have shown that if j is recurrent then limn→∞ P
(n)
ij always exists. The

limit is 0 if j is null recurrent and the limit is Pij if j is +ve recurrent.

Actually we can show that if the chain is a periodic and irreducible i.e. (1 class of communi-
cating states) then if i ⇔ j i is positive recurrent then j is positive recurrent.

Let us show this. Suppose i is positive recurrent and j is not. Since i and j communicate

F n, m > 1 P
(n)
ij > 0, P

(m)
ji > 0

Now
P

(n+m+K)
jj > P

(m)
ji P

(K)
ii P

(n)
ij .

Hence lim k → ∞ P
(n+m+k)
jj → 0 (null recurrence) which P

(k)
ij → πi > 0 which is a

contradiction.

This establishes the class property of positive and null recurrent states.
So far we have concentrated on understanding how a MC behaves on the long-term. We iden-

tified these properties as related to how the return times behave. A natural question is whether
there is a simple way of determining conditions on whether a chain is ergodic.

Let us consider some simple examples :
Examples:

1. (Random Walk). This is a 1-dim process constructed as follows:

Xn+1 = Xn + Zn

where {Zn} is i.i.d sequence and takes values in {−1, 1} with P(Zn = 1) = p = 1−P(Zn = −1).

Clearly since the chain can only return to 0 at even steps P
(2n+1)
0,0 = 0 and P

(2n)
00 =

(
2n
n

)
pn(1−

p)n. Hence if p = 0.5 we see
∑

n P
(n)
00 = ∞ implying 0 is recurrent. With some further

analysis it can be shown that the process is actually null recurrent.

Now if p 6= 0.5 = q = (1− p) it is easy to see that 4pq < 1 and using the fact that n is large

and Stirling’s formula: we have for large n, P
(2n)
00 ≈ (4pq)n√

πn
and thus

∑
n P

(n)
00 < ∞ or 0 is

transient. Thus a simple random walk is not ergodic and has no stationary distribution.

2. (Reflected random walk).

Let us now consider the same example except that when the chain hits 0 it either stays there
or moves to the right. Now:

Xn+1 = (Xn + Zn)+

where (x)+ = x if x > 0 or 0 otherwise.

29



Now it is easy to see that the period is 2 and fi0 =
(
q
p

)i
< 1 if q < p. Hence we have all states

are transient. On the other hand if p < q it is easy to see fi0 = 1 implying 0 is recurrent and
moreover it can be shown π = πP gives:

πj =

(
p
q

)j
1− p

q

> 0

establishing the chain is positive recurrent.

3. Random Walk with returns to 0 Here:

Xn+1 = Xn + Zn

where Zn is and independent seq. with P(Zn = 1|Xn = m) = pm = 1−P(Zn = −Xn|Xn = m).

Now we can see:

f
(1)
00 = p0

f
(n)
00 = pn−1

n−2∏
j=0

qj

Thus: P0(T0 < m) = P(T0 < m|X0 = 0) = 1 − Um where Um =
∏m−1
i=1 qi. Now we know

limn→∞
∏
qj(1− pj) = 0⇔

∑∞
j=0 pj =∞. Hence 0 is recurrent iff

∑
j pj =∞. Consider the

special case pj = p = 1− qj = 1− q. In this case we can see E0[T0] <∞ establishing positive
recurrence.

We now state the general ergodic theorem for MC. and provide a proof:

Theorem 4.4. Let X(0)n} be a homogeneous, irreducible, and recurrent MC. Let µ denote the
invariant distribution and let f : E → < such that:

∑
i∈E |f(i)|µi <∞. Then:

lim
n→∞

1

ν(n)

n∑
k=1

f(Xk) =
∑
i∈E

f(i)µi (4.1)

where:

µi = E0[

T0∑
k=1

1I[Xk=i]

and

ν(n) =
n∑
k=1

1I[Xk=0]

Proof: It is sufficient to show proof for positive functions. We now exploit the regenerative property
of MC to prove this.

Let τi be the successive return times to 0. Define:

Yp =

τp+1∑
k=τp+1

f(Xk)
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Then from the strong Markov property {Yp} are i.i.d. and

E[Yp] = E[

τp+1∑
k=τp+1

f(Xk)] = E0[

τ1∑
k=1

f(Xk)]

= E0[

τ1∑
k=1

∑
i∈E

f(i)1I[Xk=i]] =
∑
i∈E

f(i)E0[

τ1∑
k=1

1I[Xk=i]]

=
∑
i∈E

f(i)µi

where we have used the definition that µi = E0[
∑τ0

k=1 1I[Xk=i]] Therefore: by the SLLN:

lim
n→∞

1

n

n∑
i=1

Yi = E[Y1] =
∑
i∈E

f(i)µi

Now by definition: τν(n) ≤ n < τν(n)+1 by definition of ν(n). Noting ν(n) → ∞ as n → ∞ if the

states are recurrent the result follows by noting
∑ν(n)

k=1 f(Xk) ≤
∑n

k=1 f(Xk) ≤
∑ν(n)+1

k=1 f(Xk).

Corollary 4.1. If the MC is positive recurrent then the SLLN reads:

lim
n→∞

1

n

n∑
k=1

f(Xk) = E[f(X0)] =
∑
i∈E

f(i)πi (4.2)

where π is the stationary distribution of the MC.

Proof: The only thing to note that if Xn is positive recurrent then
∑

i µi <∞ and hence:

lim
n→∞

n

ν(n)
=
∑
i∈E

µi

by definition of the invariant measure.

We now conclude this discussion with an easy to verify suffiiciency theorem to check whether or
not a MC is positive recurrent. This is called te Foster-Lyapunov theorem and is just a consequence
of the strong Markov property.

Lemma 4.1. Let {Xn} defined on (E,P ) be a hmomgeneous MC Let F ⊂ E and τF = inf{n ≥ 0 :
Xn ∈ F} be the hitting or first entrance time to the set F . Define:

m(i) = E[τF |Xo = i]

Then:

m(i) = 1 +
∑
j∈E

Pijm(j); i∈/ F

= 0 i ∈ F
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Proof: Clearly if i ∈ F the result is trivial. Now suppose X0∈/ F then τF being a stopping time is
a function of Xn i.e.

τF (Xn) = 1 + τF (Xn+1)

by the Markov property since in 1 step it goes from Xn to Xn+1. Hence:

E[τF (Xn)|X0 = i] = E[1 + τF (Xn+1)|X0 = i]

= 1 +
∑
j∈E

E[τF (Xn+1)1IX1=j]|Xo = i]

= 1 +
∑
j∈E

E[τF (Xn+1)|X1 = j]P(X1 = j|X0 = i)

= 1 +
∑
j∈E

Pijm(j)

where we used the strong Markov property in the 3rd step.
With the help of this lemma we now state and prove the Foster-Lyapunov theorem.

Theorem 4.5. (Foster-Lyapunov Criterion) Let {Xn} be an irreducible, homogeneous MC on
(E,P ). Then a sufficient condition for {Xn} to be positive recurrent is that ∃ a function h(.) :
E → < and a finite subset F of E and a ε > 0 such that:

a) infi∈E h(i) > −∞

b)
∑

k∈E Pikh(k) <∞ ∀ i ∈ F

c)
∑

k∈E Pikh(k) ≤ h(i)− ε ∀ i∈/ F

Proof: First note since infi h(i) > −∞, by addiding a constant we can assume that h(i) ≥ 0 ∀ i ∈
E. By the definition of transition probabilities c) can be written as:

E[h(Xn+1)|Xn = j] ≤ h(j)− ε ∀ j ∈ F (4.3)

which is equivalent to :
E[h(Xn+1)− h(Xn)|Xn = j] ≤ −ε < 0

or the conditional drift in state j ∈ F is negative.
Let τF = infn{n ≥ 1 : Xn ∈ F} and define Yn − h(Xn)1I[n<τF ].
Note τF is a stopping time. Let i∈/ F and Ei[.] denote E[.|X0 = i], then:

Ei[Yn+1|X0, X1, . . . , Xn] = Ei[Tn+11I[n<τF ]|X0, . . . , Xn] + Ei[Yn+11I[τF≤n]X(0)0, . . . , Xn]

= Ei[Yn+11I[n<τF ]|X0, . . . , Xn]

≤ Ei[h(Xn+1)1I[n<τF ]|X0, . . . , Xn]

= 1I[n<τF ]Ei[h(Xn+1|Xn]

≤ 1I[n<τF ](h(Xn)− ε)

where we used the fact that 1I[n<τ ] is completely known given X0, . . . , Xn and if n < τF then Xn∈/ F .
So taking expectations w.r.t. Ei once more,

0 ≤ Ei[Yn+1] ≤ Ei[Yn]− εPi(τF > n)
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Iterating this inequality startng from 0 we obtain:

0 ≤ Ei[Y0]− ε
n∑
k=1

Pi(τF > k)

But we know:
∑∞

k=1 Pi(τF > k) = Ei[τF ], but Ei[Y0] = h(i) and hence: Ei[τF ] ≤ h(i)
ε <∞.

On the other hand using the previous lemma we have for j ∈ F :

Ej [τF ]1 +
∑
i∈/ F

PjiEi[τF ]

and hence:

Ej [τF ] ≤ 1 +
1

ε

∑
i∈/ F

Pjij(i)

which is finite by condition b).
Thus Ei[τF ] < ∞ for all states i ∈ F . Since F is finite it immediately implies that for any

i ∈ F , Ei[Ti] <∞ where Ti is the return time to state i and hence the states are positive recurrent.
Since by assumption the chain is irreducible all states are therefore positive recurrent and thus the
chain is ergodic.

In many applications E = Z+ = {0, 1, 2, . . . , }. In this case there is a much simpler version
known as Pakes’ theorem that applies. We state this below.

Corollary 4.2. Let E = Z+. Define the conditional drift in state i as follows:

ri = E[Xn+1 −Xn|Xn = i] (4.4)

Suppose:

i)supi∈E |ri| <∞

ii) There exists a i0 <∞ such that for all i ≥ i0, ri < −ε for some ε > 0.

Then the chain is ergodic.
Proof: This just follows from above by taking h(Xn) = Xn and F = {i ∈ Z+ : i ≤ i0 − 1}. Then
all conditions of the Foster-Lyapunov theorem are satisfied.

We conclude our discussion to show how these results apply on a canonical example the repre-
sents a discrete-time queue.
Example:

Let :
Xn+1 = (Xn − 1)+ + νn+1

where νn+1 is a i.i.d sequence with 0 < E[νn+1]] < 1 .
Then applying Pakes theorem we see for all i > 1:

E[Xn+1 −Xn|Xn = i] = −1 + E[νn+1] < 0

implying that the chain is ergodic,
In the next section we study the convergence to stationary state a bit further as in the finite

state case.
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4.2 Coupling and Convergence to Steady State

Suppose Xn is an a periodic, irreducible M.C. which is positive recurrent. We have shown
1
N

∑N
n=1 P

(n)
ij → πj as N → ∞ from the ergodic theorem by noting that P

(n)
ij = Ei[1IXn=j ].

When |E| <∞ we actually showed that P
(n)
ij → πj as n→∞ independent of i and the convergence

rate was geometric. This convergence is actually related to the notion of stability . We discuss this
issue in detail now. Specifically:

How does P
(n)
ij → πj? In the finite case we have seen the convergence is geometric. Under

what conditions is this true for infinite chains?
We can show something stronger. Xn converges to a stationary process in a finite but random

time. This is called the setting time or coupling time. The ramification of this is that when we try
to simulate stationary MC we need not wait for an infinite time for the chain to be stationary, we
can observe certain events, and once they occur we can conclude that after that time the chain is
stationary.

But first let us recall the result we showed for finite state Markov chains.

Let P be at time n × n and let

min
(i)

Pij = ε > 0

Let π
(n)
i = P{Xn = i}

and πi = P{Xn = i} (stationary dist)

where πi =
∑
j

πj Pji

Define

‖π(n) − π‖ =
1

2

∑
1

| π(n)i − πi |

This is called the ‘total variation’ metric and convergence under this is called total variation
convergence. The factor 1

2 is just to normalize the metric.

Now in the proof of Theorem 5.2 we saw

mj(n) ≤ Pij(n) ≤M (n)
j

and since
min
ij

Pij > 0

⇒ π
(n)
j ↓ πj , m

(n)
j ↑ πj

Hence ∑
j

| π(n)j − πi| =
∑
j

|
∑
i

π
(0)
i P

(n)
ij − πj |

≤
∑
j

| M (n)
j − m

(n)
j |

≤ (1− ε)n
∑
j

| Mj − mj | ≤ 2(1 − ε)n.
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Note ∑
j

| Mj − mj | =
∑
j∈E
| max
i∈E
{ | P (ij)} −min

i∈E
P (ij) ≤ 2

Hence
‖π(n) − π ‖ ≤ 2(1 − ε)n

This convergence is geometric.

Indeed (1 − ε)n is related to the tail distribution of a fundamental quality associated with the
convergence: a so-called coupling time which we will now discuss. Coupling is a powerful technique
which can be used to establish existence of stationary distributions, rate of convergence, etc.

The basic approach is the following: suppose {X1
n} and {X2

n} are two homogeneous irreducible
and a periodic M.C.’s with the same P which are independent.

Define Zn = (X1
n, X

2
n) on E X E. Then Zn is a M.C. with transition problem matrix

P ij,klP {Zn+1 = ((k, l) / Zn = (i, j)) = Pik Pjl}

Suppose the chain is positive recurrent then, F a finite τ such that starting for any states i and j
the chain goes to a diagonal state where the two co-ordinates are equal i.e.,

X1
τ = X2

τ

Define

Xn = X1
n n ≤ τ

= X2
n n ≥ τ.

Then we can show the following.

Proposition: {Xn} is a +ve recurrent M.C. with transition probability matrix P defined above .

Proof: This follows directly from the strong M.C. proposition. Let us formally define coupling.

Definition 4.3. 2 stochastic processes {X1
n}, {X2

n} and with values in E are said to couple if there
exists a τ(ω) < ∞ s.t. for all

n ≥ τ : ⇒ X1
n = X2

n.

Lemma 4.2. (The coupling inequality)
Let {X1

n} and {X2
n} be two independent processes defined on (Ω,F , P ) and let τ be a coupling

time . Then for any A ∈ F we have:

|P (X1
n ∈ A)− P (X2

n ∈ A)| ≤ P (τ > n) (4.5)

Proof:
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P (X1
n ∈ A) − P (X2

n ∈ A) = P (X1
n − A, τ ≤ n)

− P (X2
n ∈ A, τ ≤ n)

+ P (X1
n ∈ A, τ > n)

− P (X2
n ∈ A, τ > n)

Now if τ ≤ n ⇒ X1
n = X2

n by definition of τ . Therefore

P (X1
n ∈ A) − P (X2

n ∈ A) = P (X1
n ∈ A, τ > n)

− P (X2
n ∈ A) τ > n)

≤ P (τ > n).

By symmetry we have the P (X2
n ∈ A)− P (X1

n ∈ A) ≤ P (τ > n) and so the result follows.
Using this inequality we will now prove the convergence in the true recurrent sense.

Now suppose X1
n is a +ve recurrent chain independent of X2

n which is also +ve recurrent (we
assume both are a periodic and irreducible). Then Zn = (X1

n, X
2
n) is +ve recurrent.

We are now ready to state the main convergence or stability result.

Proposition 4.5. Let {Xn} be an irreducible, aperiodic and positive recurrent with stationary
distribution π. Then:

lim
n→∞

π
(n)
j = πj (4.6)

uniformly in j ∈ E for any initial distribution. In particular

lim
n→∞

P
(n)
ij = πj

for all i, j ∈ E.

Proof:
Construct to independent MC on E × E with transition probability P .
Let τ be a coupling time state the chains meet at X1

n = X2
n.

Then if X2
n has an initial distribution π then P{X2

n = j} = πj for all j.

Using the coupling inequalities∑
j

| P{X1
n = j} − πj | ≤

∑
P (X1

n = j, τ > n) + P (X2
n = j, τ > n)

≤ 2 P (τ > n).

Therefore since τ < ∞ P (τ → n) → 0 ∞ n → ∞. So

|P (n)
ij − πj | → 0

From this we see
∑

j∈E |P
(n)
ij − πj | → 0 as n→∞

In fact after τ the chain can be considered to have converged to the stationary distribution.
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Remark 4.4. The aperiodicity and irreducible assumption is important. Otherwise is is very easy
to construct periodic chains that never meet at a diagonal especially if they start out in different
cyclic subclasses. Hence the periodic case can be treated by considering the transition probability
matrices P d .

How do we get convergence rates from these results?

Lemma 4.3. Suppose E[ϕ(τ)] < ∞ for a non-decreasing function ϕ(.). Then

|Pnij − πj | = 0

(
1

ϕ(n)

)
Proof: Since ϕ(τ) is non-decreasing

ϕ(τ) 1 (τ > n) > ϕ(n)1{τ>n}

So
ϕ(n)P (τ > n) ≤ E

[
ϕ(τ) 1{τ > n}

]
Now since E

[
ϕ(τ) 1{τ>n}

]
→ 0 > n ↑ ∞ by finiteness of E[ϕ(τ)] we have ⇒ ϕ(n) P (τ >

n) → 0 ∞ n→∞ P (τ > n) = 0
(

1
ϕ(n)

)
.

Of course, depending on the MC we need to establish that E[ϕ(τ)] < ∞. When |E| < ∞ it is
easy to show the following:

Lemma 4.4. Let {Xn} be a finite state M.C. on (E,P ), then there exists α > 0 s.t.

E [eατ ] < ∞.

Proof: The proof follows from taking ϕ(τ) = eατ and since the MC is finite the hitting time to
the diagonal state can be shown to have a geometric tail distribution. Hence convergence of the
distribution to the steady state is geometric.

With this we conclude our study of discrete-time Markov chains. In the next part we will study
continuous-time Markov chains where these results will play an important part.
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