
Chapter 3

Second-order processes : L2-theory

In this chapter we will study stochastic processes characterized by their first two moments or second-
order processes. Such processes are termed L2(IP) processes, i.e., processes for which E[|Xt|2] <∞.
It turns out that from the point of view of signal processing these assumptions are sufficient to
yield useful results much in the same way as Fourier series and transforms do in the deterministic
context. In fact second order or L2 theory gives analogous results on representations of stochastic
processes which are important not only in sampling and reconstruction of stochastic processes but
also the related issue of filtering by which we reduce the effects of noise on signals. We will begin
with some general results regarding covariance functions and then discuss the cases of discrete-time
and continuous-time stochastic processes.

3.1 Properties of the Covariance

Let us first recall the definition of a second-order process. Sine there are many applications in which
we need to work with complex-valued processes we assume that the processes take values in C, i.e.,
they are complex-valued.

Definition 3.1.1 A stochastic process {Xt}t∈T which takes values in C is said to be a second-order
process if E[|Xt|2] <∞ for all t ∈ T .

As mentioned in Chapter 2, a second-order process {Xt} is characterized in terms of its mean
mt = E[Xt] and its covariance R(t, s) = E[(Xt −mt)(Xs −ms)∗]. A second-order process is said to
be wide-sense stationary (w.s.s.) if mt = m a constant not depending on t and R(t, s) = R(t − s)
with R(t) = R∗(−t) i.e. it is a symmetric function in the difference t− s.

Let us first study some elementary properties of the covariance function. Unless explicitly men-
tioned we will always take the mean of the process to be 0 without loss of generality. Also we take
T to be continuous. The properties of the covariance function for discrete-time 2nd. order processes
or sequences follows mutatis mutandis.

Proposition 3.1.1 Let {Xt}t∈T be a complex valued second-order process with mean 0 and covari-
ance R(t, s). Then R(t, s) satisfies the following properties:

i. R(t, s) = R∗(s, t) and R(t, t) ≥ 0.
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ii. R(t, s) is a non-negative definite function on T × T i.e. let {λi}Ni=1 be any complex scalars and
{ti}Ni=1 be any set of points in T . then:

N∑
i=1

N∑
j=1

R(ti, tj)λ∗jλi ≥ 0

for all N and complex scalars λi and points ti.

iii. |R(t, s)| ≤
√
R(t, t)

√
R(s, s)

iv. Additivity i.e. if R1(t, s) and R2(t, s) are covariance functions then R(t, s) = R1(t, s) +R2(t, s)
is a covariance function.

v. Multiplicative property: i.e. if R1(t, s) and R2(t, s) are covariance functions then R(t, s) =
R1(t, s)R2(t, s) defines a covariance function.

vi. Given any function σ(t) on T with values in C then σ(t)σ∗(s) defines a covariance function.
In particular if {Ci}ni=1 are positive constants and {σi(t)}ni=1 are continuous functions on T
then

∑n
i=1Ciσi(t)σ

∗
i (s) defines a covariance. If the limit as n→∞ of the above series is well

defined in a L2(T ) sense then the limit will be a covariance.

Proof: The proof of i) is a consequence of the definition.
For the proof of ii) define the r.v.

Y =
N∑
i=1

λiXti

Then

E[Y Y ∗] =
N∑
i=1

N∑
j=1

λiR(ti, tj)λ∗j ≥ 0

The proof of iii) is just the Cauchy-Schwarz inequality.
For the proof of iv) let Xt be a Gaussian process with covariance R1(t, s) and Yt be another

Gaussian process independent of Xt with covariance R2(t, s). Then Zt = Xt + Yt is a Gaussian
process with covariance R(t, s) = R1(t, s) +R2(t, s).

The proof of v) follows as above with Zt = XtYt.
For the proof of vi) define Xt = σ(t)Z where Z is N(0, 1) then Xt has the required covariance.

The extension to finite sums and the limit is direct.

Corollary 3.1.1 If {Xt} is w.s.s. then R(τ) = E[XtX
∗
t+τ ] has the following properties: R(0) ≥ 0,

R(τ) = R∗(−τ) and |R(τ)| ≤ R(0).

We now study the continuity of a second-order process and show how the continuity properties can
be obtained from the knowledge of the covariance function.

Let us first recall the definition of quadratic mean (q.m) or mean squared continuity.

Definition 3.1.2 A second-order stochastic process {Xt}t∈T is said to be q.m. continuous at t if :

E[|Xt+h −Xt|2] h→0→ 0

If it is continuous for all t ∈ T then we simply say that {Xt} is q.m. continuous.
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Proposition 3.1.2 Let {Xt}t∈T be a second-order process with covariance R(t, s) (wlog we take
mt = E[Xt] = 0). Then

a) {Xt} is continuous at t in the q.m. if and only if R(., .) is continuous at the diagonal R(t, t).

b) If {Xt} is q.m. continuous (at every t ∈ T ) then R(., .) is continuous at every point (t, s) ∈ T×T .

c) If a non-negative definite function R(t, s) on T × T is continuous at every diagonal point it is
continuous everywhere on T × T .

Proof: a) It R(t, t) is continuous then

E[|Xt+h −Xt|2] = R(t+ h, t+ h)−R(t, t+ h)−R(t+ h, t) +R(t, t)
= (R(t+ h, t+ h)−R(t, t)− (R(t+ h, t)−R(t, t))− (R(t, t+ h)−R(t, t)
→ 0 as h→ 0

Conversely, if {Xt} is q.m. continuous at t then:

|R(t+ h, t+ h′)−R(t, t)| = |E[Xt+hX
∗
t+h′ ]−E[XtX

∗
t ]|

= |E[(Xt+h −Xt)X∗t+h]−E[Xt(Xt+h′ −Xt)∗]|

≤
√

E[|Xt+h −Xt|2]E[|Xt+h′ |2] +
√

E[|Xt+h′ −Xt|2]E[|Xt|2]

→ 0 as h, h′ → 0

b)

|R(t+ h, s+ h′)−R(t, s)| = E[Xt+hX
∗
s+h′ ]−E[XtX

∗
s ]|

≤
√

E[|Xt+h −Xt|2]E[|Xs+h′ |2] +
√

E[|Xs+h′ −Xs|2]E[|Xt|2]

→ 0 as h, h′ → 0

c) The proof of this part follows from parts a) and b) by noting that any non-negative definite
function can be associated with the covariance of a second-order process.

3.2 Hilbert spaces associated with second-order processes

Second-order processes have a natural space on which they are defined. The fact that they are
characterized by their second-order properties defined through their covariances gives rise to a Hilbert
space L2(IP), i.e. a linear vector space associated with random variables with finite second moments.
We now recall some elementary facts about Hilbert spaces. A linear vector space is said to be
complete if every Cauchy sequence has its limit in that space. Of course to speak of convergence we
need the notion of a metric or ‘distance’ between two elements of that space. The metric is provided
by the definition of a norm which should satisfy the properties below:

Definition 3.2.1 The metric or distance measure, denoted ||.||, defines a norm on a vector space
if:

i. For every x ∈ X, ||x|| ≥ 0 and the equality holds if and only if x = 0.
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ii. For any scalar α, ||αx|| = |α|||x||.

iii. If x, y ∈ X then ||x+ y|| ≤ ||x||+ ||y||

Example: In <n the Euclidean distance metric denoted by ||x− y|| =
√∑n

1 |xi − yi|2 is a norm.

Definition 3.2.2 A complete normed space is called a Banach space.

Before giving the definition of a Hilbert space we need the notion of an inner-product.

Definition 3.2.3 Given a vector space X, an inner-product in X, denoted by [., .], is a scalar (in
general complex if X is)associated between any two elements x, y ∈ X with the following properties:

i. [x, x] = ||x||2 i.e. the inner-product of an element with itself defines a norm.

ii. For any x, y, z ∈ X and any scalars (could be complex) a and b:

[ax+ by, z] = a[x, z] + b[y, z]

i.e. it is linear w.r.t. the first argument.

iii. [x, y] = [y, x]∗

We now define a Hilbert space.

Definition 3.2.4 A complete inner-product space is called a Hilbert space.

Example: In <n an inner-product is given by the usual scalar product defined by [x, y] =
∑n

1 xiyi.
If we consider the space of complex-valued square-integrable functions on [0, T ] it can be readily

verified that an inner-product is given by [f, g] =
∫ T

0 f(t)g∗(t)dt. It is important to note that the
inner-product (and hence the norm) need not be uniquely defined i.e. there could be several norms
defined on a space. However if the space is finite-dimensional it can be shown that all norms are
equivalent.

Having briefly discussed the notion of a Hilbert space we now show how we can associate a
Hilbert space with second-order processes.

Let us first begin by seeing how these spaces arise. Let X and Y be two r.v’s (mean 0 without
loss of generality) with finite second-moments. Then the covariance operator:

cov(X,Y ) = E[XY ∗]

defines an inner-product on the space of r.v’s with finite second moment where the space H is taken
to be the space of all linear combinations of second-order r.v’s where

Y =
n∑
k=1

akXk

and their limits in the mean square when they exist. Noting by the fact that if a r.v. has variance 0
it is almost surely a constant (0 in the case of mean 0 r.v’s) then two elements are equivalent (in a
probabilistic sense) if E[|X−Y |2] = 0. We have seen that if a r.v. is Cauchy in the mean square then
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the limit exists and is a second-order r.v. and thus the space generated by all linear combinations
of second-order r.v’s becomes a Hilbert space (denoted L2(IP) equipped with the inner-product

[X,Y ]L2(IP) = E[XY ∗]

The subscript on the inner-product is used to differentiate between the inner-product in L2(IP) from
the inner-product in <n.

Associated with the space L2(IP) we can define Hilbert subspaces. For example, given a sequence
of second-order r.v’s {Xn} we can define a Hilbert sub-space generated by all linear combinations of
the past of the process at time n denoted by : H−n defined by

{Y : Y = linear span of Xn−1, Xn−2.....}

and of the future denoted by H+
n

{Y : Y = linear span of Xn+1, Xn+2, .....}

where the equalities are understood in the mean-squared sense.
Let us now study some consequences of the Hilbert spaces and their relation to representation

of w.s.s. processes.
The geometry of these spaces plays a very important role in the problems of linear filtering,

prediction and smoothing (linear estimation theory) which will be discussed in detail elsewhere.
Having defined the Hilbert space L2(IP) with inner-product [X,Y ] (we drop the sub-script L2(IP)

when the meaning is unambiguous) we say that two elements X and Y are orthogonal if they are
uncorrelated i.e. [X −mx, Y −my] = 0 where E[x] = mx and E[Y ] = my. As we saw in chapter
1 the conditional expectation can be viewed as a projection of one r.v. onto the other. If the two
r.v’s are jointly Gaussian then the conditional expectation is a linear function of the r.v. on which
we condition.

In the context of L2 r.v’s we denote the linear projection of one r.v. onto a given subspace
spanned by others as Ê(X|H1) knowing that if X and the r.v’s which define H1 are jointly Gaussian
then the projection is indeed a conditional expectation.

Let {Xn} be a w.s.s. sequence. Define Hn = span(· · · , Xn−1, Xn), i.e., the linear space generated
by the r.v.’s {Xk} up to time n.

Define X̂n−1 = Ê(Xn|Hn−1), i.e. the projection of Xn onto its past. Also define νxn = Xn− X̂n−1

, the ”error”. Then from the projection theorem we know that νxn is uncorrelated with all {Xk}, k =
n− 1, n− 2, n− 3, . . ., i.e νxn⊥Hn−1.

By definition:
Xn = X̂n−1 + νxn

Define: H−∞ = ∩n∈ZHn. This is the subspace which consists of the remote past of {Xn}.
Similarly define H∞ = ∪n∈ZHn. This is the subspace associated with the entire sequence {Xn}.

Definition 3.2.5 The process {νxn} is called the innovations process.

We drop the superscript x when the context is clear.

Definition 3.2.6 A stochastic process {Xn} is said to be deterministic if and only if for all n,
Xn ∈ Hn−1. If this is not the case then we call the process non-deterministic. If H−∞ = {0}, then
{Xn} is said to be purely non-deterministic or regular.
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DefineNn = span{. . . , νn−1, νn},i.e., Nn is the space spanned by the innovations process associ-
ated with {Xn}.Similarly define N−∞ =

⋂
nNn and N∞ =

⋃
nNn.

Lemma 3.2.1 For any m < n we have:
a) Hn = Hm + span(νm+1, . . . , νn)

b) Hm⊥span(νm+1, . . . , νn)

c) Hn = H−∞ +Nn, N−∞ = {0} and H−∞⊥N∞.

Proof: The proofs of parts a) and b) are direct from the definitions of νn and the fact that they are
errors associated with projections. we will only prove the last part.

Let h ∈ H−∞., then by definition h ∈ Hn−1∀n ∈ Z. So h⊥νn ∀n ∈ Z. Now by the continuity of
the inner-product, h⊥span{, . . . , ν−1, ν0, . . .}. so it follows that H−∞⊥N∞.

Now for any p ∈ N−∞,⇒ p ∈ Nn ⊂ Hn ∀n so p ∈ H−∞
⋂
N−∞. This implies that p = 0 since

N−∞ ⊂ H−∞. Also by the definition of Nn we have Hn ⊃ H−∞+Nn. Now for ant h ∈ Hn we have:

Ê[h|H−∞ +Nn] = Ê[h|H−∞] + Ê[h|Nn](since H−∞⊥Nn)
= lim

m→−∞
Ê[h|Hm] + lim

m→−∞
Ê[h|νm+1, · · · , νn]

= lim
m→−∞

Ê[h|Hn]

= h

This means that Hn ⊂ H−∞ +Nn and hence the result follows.

We now prove an important result associated with the representation of w.s.s. sequences due to
Wold.

Theorem 3.2.1 (Wold decomposition)
Let {Xn} be a < valued w.s.s. process and {νn} be the corresponding innovations process. Then:

a) Xn = Un + Vn where Un = Ê[Xn|Nn], Vn = Ê[Xn|H−∞] and Un⊥Vn, ∀n.

b) The process {Un} is a w.s.s. process and has the representation:

Un =
∞∑
k=0

akνn−k

where E[νnνm] = σ2δn,m. Furthermore,

0 ≤
∞∑
k=0

a2
k <∞

and a0 = 1

c) {Vn} is a deterministic w.s.s. process and

span(· · · , Vn−1, Vn) = H−∞ ∀n
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Proof:
a) The proof of this part is immediate from the fact that Hn = Nn +H−∞.
b) By definition Ê[νn|Hm] = 0 ∀ n > m. Now since Un ∈ Nn there exist an such that

Un =
∑∞
k=0 akνn−k where:

akσ
2 = E[Ukνn−k]

= Ê[Ê[Xk|Nk]νn−k]
= Ê[Ê[Xkνn−k|Nk]]
= Ê[Xkνn−k] = E[X0ν−k]

Hence:

σ2 = E[X0ν0]
= E[(ν0 + Ê[X0|H−1])ν0]
= E[ν2

0 ]

c) Now Nn ⊂ Hn, Vm ∈ H−∞ ⊂ Hn ∀m,n ∈ Z.
Furthermore for all m < n, Xm = Um+Vm ∈ Nn+span(..., Vn−1, Vn) and span(..., Vn−1, Vn)⊥Nn.

Also since Nn + span(..., Vn−1, Vn) = Hn = Nn + H−∞ and the orthogonal complement of Nn is
unique it implies that span(..., Vn−1, Vn) = H−∞. This completes the proof.

Remark 3.2.1 The Wold decomposition holds for <n- valued processes also. In that case ak is a
matrix and σ2 = Σ is a matrix. In that case if Σ is singular , then A0Σ = Σ = ΣA∗0. If Σ is
non-singular then A0 = I.

The significance of the Wold decomposition becomes clear if we consider the following prediction
problem.

Let {Xn} be a 0 mean w.s.s. process. Denote X̂n|0 = Ê[Xn|H0] where H0 = span(..., X−1, X0)
i.e. we want to predict the value of Xn knowing all the past values up to 0 i.e. prediction of X n
steps into the future if we regard 0 as the present.

From the Wold decomposition:

Xn = Vn +
∞∑
k=0

akνn−k

with
∑∞
k=0 |ak|2 <∞.

Hence:

X̂n|0 = Ê[Vn +
∞∑
k=0

akνn−k|H0]

= Ê[Vn|H0] +
∞∑
k=0

akÊ[νn−k|H0]

= Vn +
∞∑
k=0

akÊ[νn−k|N0]

= Vn +
∞∑
k=n

akνn−k
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The error in prediction is:

E[Xn − X̂n|0]2 = σ2
n = σ2

n−1∑
k=0

a2
k

where σ2 = E[ν2
n]. If {Xn} is purely non-deterministic or regular then Vn = 0 and also:

lim
n→∞

σ2
n = σ2

∞∑
k=0

a2
k = E[X2

n]

implying that if we try to predict further and further out we basically obtain 0 as the prediction
since the error is the same as the variance of Xn.

Of course, the Wold decomposition depends on knowing the coefficients {ak}. In practice we
can measure the covariance E[XnX

∗
n+k] = R(k) (assuming 0 means). We will see later how this

information allows us to determine the {ak}. We conclude our discussion on the Hilbert space
structure for w.s.s. processes here.

In the above we have considered Hilbert spaces associated with discrete-time second-order pro-
cesses. In a similar way we now consider spaces generated by q.m continuous processes. To do so we
have to consider the continuous-time equivalent of a linear mapping on the process with is defined
through an integral. For this we need to define stochastic integrals and give conditions for them to
exist.

3.2.1 Stochastic integrals of second-order processes

As mentioned above the analog of a linear transformation associated with a q.m continuous process is
that of an integral defined w.r.t. to a sample-path of a stochastic process. We used them in Chapter
2 (in the context of ergodic processes assuming that they were well defined). These integrals arise
when we want to study the output of a linear system whose input is a q.m. continuous process.
Specifically, we would like to define processes of the type

Yt =
∫ t

0
h(t, s)Xsds

where h(t, s) is the impulse response of a linear system. Of course the limits of integration need not
be [0, t) and could be semi-infinite intervals such as (−∞, t], [0,∞) etc..

Let [a, b] be a finite-interval in T . Let {ti}ni=1 be points of T such that :

Jn = {ti : a = t1 < t2 < . . . < tn−1 < tn = b}

Then we define (if it exists):

∫ b

a
f(s)Xsds = lim in q.m.

n−1∑
k=1

f(τk)Xτk(tk+1 − tk); tk ≤ τk < tk+1 (3.2. 1)

where in the limit as n → ∞ is such that sup |tn − tn−1| → 0 and the limit is independent of the
choice of Jn.

Note as defined the partial sums are Riemann sums and thus the limit is a q.m. limit of Riemann
sums or the integral is defined as a Riemann integral.
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If Xt is q.m. continuous then we know that the covariance function R(t, s) is continuous on
T × T and hence the limit will exist in the q.m. sense if and only if the following integral exists (in
a Riemann sense) : ∫ b

a

∫ b

a
f(t)f(s)∗R(t, s)dtds <∞ (3.2. 2)

and since [a, b] is finite it is sufficient if f(t) is piece-wise continuous on [a, b]. The extension to the
one or both end-points being infinite is to consider the finite intervals and then require the limit of
the integral (3.2.2) to exist for the corresponding limits.
Remark: Stochastic integrals can also be defined pathwise (i.e. for almost every sample path)
but to do so we need to introduce the notion of Lebesgue integrals which is beyond the scope of
the course. Furthermore note that the integrand above is taken to be non-random since all we are
defining is a linear operation on {Xt}. The extension of to random integrands is the purview of Ito
stochastic integrals and once again beyond the scope of the course.

Hence, since by definition the integrals are q.m limits of sums of second-order processes the limit
is a second-order r.v.. Hence we can associate a Hilbert space with q.m. continuous processes and
Hilbert subspaces for defining the ‘past’ and ‘future’ as in the case of sequences. In particular we
have:

E[
∫ b

a
f(s)Xsds(

∫ b

a
g(u)Xsdu)∗] =

∫ b

a

∫ b

a
f(t)g(s)∗R(t, s)dtds = [AX,BX]L2(IP)

where the ‘operator’ AX =
∫ b
a f(s)Xsds and similarly for B.

3.2.2 More on the Hilbert space structure associated with second order pro-
cesses

The Wold decomposition provides a way of representing any w.s.s. sequence in terms of uncorrelated
sequences {νn}. This provides an orthogonal decomposition for for the sequence {Xn} where the
inner-product between two r.v’s X and Y is defined as: [X,Y ] = cov(X,Y ).

We can develop a similar framework for any sequence of second order r.v’s. This is the basis of
linear estimation theory that we will see in the next chapter in detail.

Let {Xk}∞k=0 be a 0 mean1 second order sequence of r.v’s with var(Xk) = σk <∞.
Define:

LXk = span{X0, X1, · · · , Xn} = {Yn : Yn =
n∑
k=0

akXk, ak ∈ < with |ak|2 <∞}

Then for each n <∞ the spaceLXn forms a linear space of 2-nd order r.v’s that are formed from
a linear combination of {Xk}nk=0.

Define X̂0 = 0 and ν0 = X0. Then we have:

X0 = ν0 ∈ LX0

.
Define X̂n|n−1 = Projection of Xn onto L

X
n−1. Then in particular:

X̂1|0 =
[X1, X0]
||X0||2

X0 =
E[X1X0]

σ2
0

X0

1It is easy to extend the result to non-zero mean sequences
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Denote a0 = E[X1X0]
σ2
0

Define ν1 = X1 − X̂1|0. Then by definition of the projection ν1 ⊥ X0, i.e.,
[X0, ν1] = E[X0ν1] = E[X1X0]−E[X1X0] = 0 or X0 and ν1 are uncorrelated. Now by the orthogonal
decomposition:

X1 = X0 + ν1 = a0ν0 + ν1

and ν0 and ν1 are uncorrelated. Moreover, it is easy to check:

E[X2
1 ] = E[a2

0X
2
0 ] + E[X2

1 ]− (E[X1X0])2

σ2
0

+

= σ2
1 + a2

0σ
2
0 − a2

0σ
2
0 = σ2

1

Hence, by definition: LX1 = Lν1 and Lν1 is spanned by uncorrelated r.v’s.
Now repeating this argument we define:

νn = Xn − X̂n|n−1

By iterating it can readily be seen that:

Xn =
n∑
k=0

ak−1νk

and moreover LXn = Lνn ∀ n.
In other words we have represented Xn as the sum of n + 1 uncorrelated r.v’s νn. or we have

obtained an orthogonal decomposition for the Hilbert space LXn much as in <n for n-dimensional
vectors through the Gram-Schmidt procedure.

Remark 3.2.2 The sequence of uncorrelated r.v’s {νn} is called the innovations sequence (or pro-
cess) associated with {Xn}. It amounts to the extra information needed over and above knowing
(X0, X1, X2 · · · , Xn−1) to reconstruct Xn in an L2 sense.

If the sequence of r.v’s is jointly distributed gaussian then the equality can be interpreted in an
a.s. sense as the linear projection is equivalent to the conditional expectation.

3.2.3 Differentiation of q.m. continuous processes

In order to develop a complete second-order calculus associated with q.m. continuous processes we
need to define derivatives. As in the case of integrals and other operations since we are working
with second-order processes we define them in the q.m. sense and seek conditions on the covariance
function for them to exist.

Definition 3.2.7 A q.m. continuous process {Xt} is said to be differentiable at t if the following
limit (denoted Ẋt) exists in the q.m. sense:

Ẋt = lim
h→0

in q.m.
Xt+h −Xt

h
(3.2. 3)

Remark: Since the derivative is the q,m. limit of second-order processes Xh
t = Xt+h−Xt

h the limit
is a second-order process and thus belongs to the Hilbert space associated with X.
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Proposition 3.2.1 If the covariance function R(t, s) of a q.m. continuous stochastic process {Xt}
has mixed partial derviatives ∂2R(t,s)

∂t∂s at the diagonal point (t, t) then the derivative Ẋt exists in the
q.m. sense at t ∈ T and conversely. If the condition holds for all t ∈ T then we say the process is
differentiable in the q.m. and then:

cov(ẊtẊs) =
∂2R(t, s)
∂t∂s

Proof: To show that the derivative exists in the q.m. case it is sufficient to show that:

lim
h,u→0

E[
(Xt+h −Xt)

h

(Xt+u −Xt)∗

u
] =

∂2R(t, t)
∂t2

by Problem 15 Chapter 2 on an equivalent necessary and sufficient condition for q.m. convergence.
Now:

lim
h,u→0

E[
(Xt+h −Xt)

h

(Xt+u −Xt)∗

u
] = lim

h,u→0

R(t+ h, t+ u)−R(t+ h, t)−R(t, t+ u) +R(t, t)
hu

= lim
h→0

1
h

(
∂R(t+ h, t)

∂t
− ∂R(t, t)

∂t

)
=

∂2R(t, t)
∂t2

Note in the above we first took the limit as u → 0 and then h → 0 but it can clearly be seen
that the order does not matter.

From the definition it is clear that ∂2R(t,s)
∂t∂s defines a covariance since it is the limit of covariance

functions and the proof is complete.

Remark: If the process is w.s.s. then R(t, s) = R(t − s) for t > s and so the covariance of Ẋt

denoted by R(1)(t) = − d2

dt2
R(t) where the negative sign occurs because the partial serivative w.r.t.

to s has a negative sign because of the negative sign associated with s.

As we have seen that under the condition that the covariance matrix is twice differentiable we
can define the derivative of a 2nd. order stochastic process which itself is a second-order process.
Thus if we formally think of dXs = Ẋsds then we can define the stochastic integral w.r.t to dXs i.e.∫ b
a f(s)dXs is well defined as in Section 3.2.1 provided

∫ b
a

∫ b
a f(t)f(s)∂

2R(t,s)
∂t∂s dtds <∞.

A natural question to ask is how many orders of the derivatives for 2nd order processes are
defined in a q.m. sense? Clearly this is related to how many derivatives of the covariance function
exist. We will study this question a little later in this chapter although from above we can infer that
the process would be twice differentiable (in the mean squared sense) if the fourth partial derivative
of the covariance exists.

3.3 Spectral Theory of Wide Sense Stationary Processes

In this section we study the spectral theory for wide sense stationary processes. Spectral theory
deals with the frequency content of signals and this in turn is related to Fourier representations of
such processes. Recall a second-order process {Xt} is said to be wide sense stationary (w.s.s) if :
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i. E[Xt] = m

ii. R(t, s) = R(|t− s|)

Let us first study the discrete-time case.

3.3.1 Herglotz Theorem for discrete-time w.s.s. processes

In the beginning of this Chapter we saw that covariance functions possess the property of non-
negative definiteness. It is usually difficult to check for this condition from the definition. However,
the non-negative definiteness of the covariance functions for w.s.s. processes can easily be established
due to the following result due to Herglotz ( called the Bochner theorem in the continuous-time case).
Essentially it amounts to the property that the Fourier transform of non-negative definite functions
is non-negative (implying that the transform is real). We state and prove this result below.

Proposition 3.3.1 Let R(n) be the covariance function of a w.s.s sequence. Then there exists a
finite measure F (λ) on (−1

2 ,
1
2 ] called the spectral measure such that

R(n) =
∫ 1

2

−1
2

ei2πλndF (λ) (3.3. 4)

where F (λ) is non-decreasing on (−1
2 ,

1
2 ] with F (−1

2) = 0 and F (1
2) = R(0). Moreover F (1

2) is
unique.

If in addition
∑∞
n=0 |R(n)| <∞ then F (λ) is differentiable in λ and

S(λ) =
dF (λ)
dλ

is called the spectral density and S(λ) ≥ 0 on (−1
2 ,

1
2 ].

Proof: We will prove the result under the assumption that a spectral density exists i.e.
∑∞
n=0 |R(n)| <

∞ since the general case requires knowledge of advanced results from analysis.
First note by the non-negative definiteness of R(n) defining:

SN (λ) =
1
N

N−1∑
j=0

N−1∑
k=0

R(j − k)e−i2πλ(j−k)

=
N−1∑

k=−N+1

R(k)e−i2πλk(1− |k|
N

)

≥ 0

Then it is easy to see that:

∫ 1
2

−1
2

ein2πλSN (λ)dλ = R(n)
(

1− |n|
N

)
; |n| ≤ N

= 0 |n| > N

Now:

|SN (λ)| ≤
N∑

n=−N
|R(n)| ≤

∞∑
n=−∞

|R(n)| <∞

12



and therefore the limit limN→∞ SN (λ) exists and therefore for every n

R(n) = lim
N→∞

R(n)(1− |n|
N

) = lim
N→∞

∫ 1
2

−1
2

ein2πλSN (λ)dλ =
∫ 1

2

−1
2

ein2πλS(λ)dλ

where the lim on the r.h.s. is by bounded convergence.
Since S(λ) is the limit of SN (λ) which is non-negative for all N it follows that the limit is

non-negative and the representation of R(n) as the Fourier coecfficient of S(λ) is proved.
Now define:

F (λ) =
∫ λ

−1
2

S(ν)dν

then F (λ) is increasing with F (−1
2) = 0 and F (1

2) = R(0) where F (λ) is now called the spectral
distribution or measure as in the first part of the statement. As mentioned earlier the existence of
the derivative S(λ) is not necessary for the Herglotz theorem to hold with F (λ) having the given
propeties.

Uniqueness states that if F and F ′ are two spectral measures corresponding to a given covariance
function R(k) then F (λ) = F ′(λ) on (−1

2 ,
1
2 ]. This follows from the fact that if f(λ) = 1(a,b](λ) with

(a, b] ⊂ (−1
2 ,

1
2 ] then we can expand f(1

2) in a Fourier series i.e,:

f(λ) =
∞∑
−∞

fne
in2πλ

And hence:

F (a, b] =
∫ 1

2

−1
2

f(ω)dF (ω) = lim
N→∞

N∑
−N

fn

∫ 1
2

−1
2

ein2πλdF (λ)

= lim
N→∞

N∑
−N

fn

∫ 1
2

−1
2

ein2πλdF ′(λ)

=
∫ 1

2

−1
2

f(λ)dF ′(λ) = F ′(a, b]

The limiting operation is valid by dominated convergence since F and F ′ are finite spectral measures.
Since the above is true for all (a, b] in (−1

2 ,
1
2 ] the proof is done i.e. F (λ) = F ′(λ) for all ω ∈ (−1

2 ,
1
2 ].

Remark: In practical terms the condition that
∑∞
n=0 |R(n)| < ∞ not being satisfied implies that

the spectral distribution F (λ) will contain discontinuities or in otherwords the spectral density
will contain delta functions(called spectral lines). More generally the lack of summability of the
covariance functions is related to a phenomenon of long-range dependence which we will see at the
end of this chapter.

As an example of the lack of summability, consider the w.s.s. sequence defined by:

Xn = X cosn2πλ0 + Y sinn2πλ0

where X,Y are independent Gaussian r.v’s with mean o and variance 1.
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Then:
R(m) = cosm2πλ0

and (formally)
dF (λ) = (δ(λ− λ0) + δ(λ+ λ0)) dλ

Suppose the condition
∑∞

0 |R(n)| <∞ is satisfied i.e. a spectral density exists then the spectral
density is just given by the Fourier series on (−1

2 ,
1
2 ] with Fourier coefficients R(n) i.e.

S(λ) =
∞∑
−∞

R(n)e−in2πλ

and in the case of real processes noting that R(n) = R(−n) we obtain:

S(ω) = R(0) + 2
∞∑
n=1

R(n) cos(n2πλ)

We are now in a position to study the questions related to the output of a linear, time-invariant,
causal and stable system whose input is a w.s.s. process. We will assume that the input process has
a spectral density.

The requirement of stability just implies that if hk denotes the discrete impulse response function
of a causal system then

∑
n |hn| < ∞ which in turn implies that the transfer function H(z) =∑∞

n=0 hnz
n is analytic on the entire unit circle. This is equivalent to saying that the transfer function

has when viewed as a rational function of z (i.e. a numerator polynomial in z and denominator
polynomial in z) has no ”poles” (roots of the denominator polynomial) inside or on the unit circle.
In practical terms, lack of stability means that the output will grow without bound and hence it is
unrealistic to assume any steady state or w.s.s. property will hold for the output process. We give
a formal definition of stable signals and the associated notion of finite-energy signals below.

Definition 3.3.1 A discrete-time signal or sequence {hk} is said to be stable if it satisfies
∞∑

k=−∞
|hk| <∞ (3.3. 5)

A discrete-time signal {hk} is said to be a finite energy signal if
∞∑

k=−∞
|hk|2 <∞ (3.3. 6)

Remark: Causality imposes the condition that hk = 0 for k < 0. In the parlance of analysis stable
signals belong to `1 while finite energy signals belong to `2. Furthermore the two sided z-transform
of stable signals defined with H(z) analytic on |z| = 1

Let {Xn} be a w.s.s. sequence (0 mean) with spectral density SX(λ). Let {Yn} denote the output
process when {Xn} is the input to a linear, time-invariant, causal (LTIC) and stable system with
impulse response function {hk}. Then,

Yn =
n∑
−∞

hn−kXk; −∞ < n <∞ (3.3. 7)

Note causality implies that hk = 0 for k < 0 and stability implies that H(z) is analytic for |z| = 1.
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Proposition 3.3.2 If a w.s.s. sequence (0 mean) with spectral density SX(λ) is the input to a
linear, time-invariant, causal and stable system, then the output process {Yn} is a w.s.s. process
with spectral density denoted SY (λ) and

SY (λ) = |H(ei2πλ)|2SX(λ) (3.3. 8)

where H(z) denotes the z-transform of the impulse response function defined by:

H(z) =
∞∑
n=0

hnz
n

.

Proof:
Since Yn =

∑n
−∞ hn−kXk =

∑∞
k=0 hkXn−k then E[Yn] = 0 Define RY (n + k, n) = E[Yn+kY

∗
n ].

Hence using the w.s.s. of {Xn} we obtain,

RY (n+ k, n) =
∞∑
j=0

∞∑
m=0

hjhmRX(k +m− j)

Multiply both sides by e−i2πλk and sum. Then we have:

∞∑
k=−∞

RY (n+ k, n)ei2πλk =
∞∑

k=−∞

∞∑
j=0

∞∑
m=0

hjhmR(k +m− j)e−i2πλk

=
∞∑

l=−∞

∞∑
j=0

∞∑
m=0

hje
−i2πλjhme

i2πλmR(l)e−i2πλl

= H(ei2πλ)H(e−i2πλ)SX(λ)

Hence, since the series on the lhs does not depend on n it implies that RY (n+ k, n) = RY (k) or the
process is w.s.s. and its spectral density is as announced.

Let us consider the more general case. Let {hn} and {gn} be two stable signals. Let {Xn} and
{Yn} be two (zero mean) jointly w.s.s. processes with cross-covariance RXY (n) = E[Xk+nY

∗
n ] and

corresponding spectral density SXY (λ). Then we have the following result which is called the the
relation of isometry. We will use the notation

∑
k∈Z to denote

∑∞
k=−∞.

Proposition 3.3.3

E[(
∑
k∈Z

hkXk)(
∑
k∈Z

gkYk)∗] =
∫ 1

2

−1
2

H(ei2πλ)G(e−i2πλ)SXY (λ)dλ (3.3. 9)

where H(z) is the two-sided z–transform of {hk} and G(z) is the two-sided z-transform of {gk}
(which exist because of the stability hypotheses).

Proof:
The proof just follows by taking the expectations and then using the Herglotz theorem for the

representation of the covariance. Indeed:

E[(
∑
k∈Z

hkXk)(
∑
k∈Z

gkYk)∗] =
∑
k∈Z

∑
j∈Z

hkg
∗
jRXY (k − j)
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=
∫ 1

2

−1
2

∑
k∈Z

∑
j∈Z

hkg
∗
j e
i(k−j)2πλSXY (λ)dλ

=
∫ 1

2

−1
2

H(ei2πλ)G(e−i2πλ)SXY (λ)dλ

where H(ei2πλ) =
∑
k∈Z hke

i2πλk and similarly for G(e−i2πλ). Note the interchange between the
integral and the summations is justified by the use of Fubini’s theorem.

Remark: We can derive the result concerning the spectral density of the output of a LTIC and
stable system using the result above. For the sake of completeness let us do it.

First note that since the system is a time-invariant,causal and stable system hk = 0; k < 0.
Noting that :

Yn =
n∑
−∞

hn−kXk

we have
∑∞
−∞ hn−ke

i2πλk = ei2πλn
∑∞
k=0 hke

−i2πλk = ei2πλnH(e−i2πλ). Similarly the corresponding
expression for G(e−i2πλ) with gk = hn−k is e−i2πλnH(ei2πλ). Hence

E[Yn+kY
∗
n ] = E[(

n+k∑
−∞

hn+k−jXj)(
n∑
−∞

hn−mXm)∗]

=
∫ 1

2

−1
2

ei(n+k)2πλH(e−i2πλ)e−in2πλH(ei2πλ)SX(lambda)dλ

=
∫ 1

2

−1
2

eik2πλ|H(ei2πλ)|2SX(λ)dλ

and the last line is just the Herglotz representation of the covariance of {Yn} with spectral density
given by |H(ei2πλ)|2SX(λ).

This concludes our discussion of spectral theory for w.s.s. sequences. In the next chapter we will
see some further consequences of the results we have developed.

3.3.2 Spectral theory for q.m. continuous w.s.s. processes

In this subsection we develop the analogous results for continuous-time w.s.s. stochastic processes.
The analogous result to the Herglotz theorem is called the Bochner theorem. Bochner’s theorem
was actually developed to obtain the representation for characteristic functions (recall in Chapter
1 we showed that characteristic functions have the non-negative definiteness property) and we will
comment on this later.

Let {Xt} be a q.m. continuous w.s.s. process with mean 0 and covariance R(τ) = E[Xt+τX
∗
t ].

Recall, R(t) is a non-negative definite function with |R(t)| ≤ R(0). Then we can state the following
theorem.

Proposition 3.3.4 (Bochner’s Theorem)
Let R(t) be a continuous non-negative definite function on (−∞,∞). Then there exists a unique,

finite, non-decreasing function called the spectral measure such that:

R(t) =
∫ ∞
−∞

ei2πλtdF (λ)) (3.3. 10)
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with F (−∞) = 0 and F (∞) = R(0). If in addition
∫∞
−∞ |R(t)|dt < ∞ then F (λ) is differentiable

with
S(λ) =

dF (λ)
dλ

≥ 0

and S(λ) is called the spectral density of the process.

Proof: The proof closely resembles the proof of the Herglotz theorem. We give a proof when a
spectral density exists i.e. under the condition that

∫∞
−∞ |R(t)|dt <∞.

Define the following integral:

ST (λ) =
1
T

∫ T

0

∫ T

0
R(t− s)e−i2πλ(t−s)dtds

Then it is easy to see that ST (λ) = [Rei2πλ, ei2πλ] where [., .] denotes the inner-product in L2[0, T ].
By the non-negative definiteness of R(t) it therefore follows that ST (λ) ≥ 0 for all λ.

Alternatively note that :

1
T

∫ T

0

∫ T

0
R(t− s)e−i2πλ(t−s)dtds =

1
T

E[(
∫ T

0
Xte

−i2πλtdt)(
∫ T

0
Xse

−iωsds)∗

=
1
T

E[|
∫ T

0
Xte

−i2πλtdt|2] ≥ 0

Changing the double integral to a single integral we obtain:

ST (λ) =
∫ T

−T
R(τ)(1− |τ |

T
)e−i2πλτdτ for 0 < |τ | ≤ T

Now |RT (τ) = R(τ)(1 − |τ |T )| ≤ R(0) hence RT (τ)e−iωτ converges to R(τ)e−i2πλτ as T → ∞ and
since

∫∞
−∞ |R(t)|dt <∞ by dominated convergence∫ T

−T
RT (τ)e−i2πλτdτ →

∫ ∞
−∞

R(τ)e−i2πλτdτ

Therefore ST (λ) converges to a finite limit for each λ ∈ (−∞,∞) as T → ∞ which we denote by
S(λ) and :

S(λ) =
∫ ∞
−∞

R(t)e−i2πλtdt

or S(λ) is the Fourier transform of R(t). Furthermore since ST (λ) ≥ 0 for all T it implies that the
limit S(λ) ≥ 0. Also noting that ST (λ) is the Fourier transform of the truncated function RT (t) we
have for every T ∫ ∞

−∞
ST (λ)dλ = R(0)

and hence
∫∞
−∞ S(λ)dλ = R(0). Taking inverse Fourier transforms we obtain that:

R(t) =
∫ ∞
−∞

ei2πλtS(λ)dλ

Uniqueness can be established as in the Herglotz theorem.

Remark: Let us see the connection between this result and that of characteristic functions. Define
the normalized covariance R(t)

R(0) = C(t). Now, C(t) is a non-negative definite function and thus
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by Bochner’s theorem the spectral measure associated with C(t) denoted by F (x) will have the
property that it is non-decreasing with F (−∞) = 0 and F (∞) = C(0) = 1 or F (x) is a probability
distribution function on (−∞,∞) and thus C(t) is the characteristic function of the r.v. X with
F (x) as its distribution function. By the argument of uniqueness as in the Herglotz theorem we
obtain that the characteristic function completely specifies the probability distribution since if two
characteristic functions are equal then they must correspond to the same distribution.

Similar to the discrete-time case we can obtain the isometry relationship in the continuous-time
case. As before we define stable signals and finite energy signals.

Definition 3.3.2 A continuous-time signal f(t) t ∈ (−∞,∞) is said to be stable if∫ ∞
−∞
|f(t)|dt <∞

and of finite energy if ∫ ∞
−∞
|f(t)|2dt <∞

Remark: In the parlance of analysis stable signals belong to L1(−∞,∞) while finite energy signals
belong to L2(−∞,∞). Note if a signal is stable then it is of finite energy but not necessarily vice
versa. A very simple consequence of the stability property is that the Fourier transform of stable
signals is well defined and if it is a rational polynomial then it will have all its poles in the left half
plane.

We now state the following isometry result. When f = g and X = Y then this is just the analog
of the Parseval theorem.

Proposition 3.3.5 Let {Xt} and {Yt} be two zero mean jointly w.s.s q.m continuous stochastic
processes with cross-spectral density SXY (λ). Let {ft} and {gt} be two real, stable signals. Then:

E[(
∫
<
ftXtdt)(

∫
<
gtYtdt)∗] =

∫
<
F (−λ)G(λ)SXY (λ)dλ (3.3. 11)

where F (λ) and G(λ) correspond to the Fourier transforms of {ft} and {gt} respectively.

Proof: For the sake of completeness we include the proof. Note by the w.s.s. stationarity and the
use of Bochner’s theorem for representing the covariance:

E[(
∫
<
ftXtdt)(

∫
<
gtYtdt)∗] =

∫
<

∫
<
ftgsRXY (t− s)dtds

=
∫
<

∫
<

∫
<
ftgse

i2πλ(t−s)SXY (λ)dλ

=
∫
<
F (−λ)G(λ)SXY (λ)dλ

where F (λ) =
∫
< fte

−i2πλtdt and similarly for G(λ).
Using this result we state the following result conncerning the output process of a stable LTIC

system whose input is a w.s.s. process {Xt} (zero mean) with spectral density SX(λ). We omit the
proof since it follows by a direct application of the isometry theorem as in the discrete-time case.
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Proposition 3.3.6 Let {Xt} be a zero mean w.s.s. process with spectral density SX(λ) which is the
input to a linear,time-invariant, causal and stable system. Let {Yt} denote the output process. Then
{Yt} is a zero mean w.s.s. process with spectral density, denoted SY (λ):

SY (λ) = |H(λ)|2SX(λ) (3.3. 12)

where H(λ) is the Fourier transform of the impulse response function of the system.

We end this section by showing how Bochner’s theorem can be used to study the existence of
higher-order derivatives (in the mean squared sense) of second order processes.

Let us first recall proposition 3.2.1. If {Xt;−∞ < t < ∞} is w.s.s. then the existence of the
derviative in the mean squared sense requires that the second partial derivative of the covariance
function R(t) exists and the second-partial derivative then corresponds to the covariance of the
derivative of the process. A natural question we posed is that can we say directly by measuring
come characteristics of the process as to how many derivatives of the process exist? The answer to
this is given by Bochner’s theorem by noting that the spectral density is nothing but the Fourier
transform of the covariance.

Let {Xt;−∞ < t < ∞} be a w.s.s. process with spectral density S(λ). We can now state the
sufficient conditions for the existence of derivatives of order n.

Proposition 3.3.7 Let {Xt;−∞ < t < ∞} be a w.s.s. process with spectral density S(λ);−∞ <
λ < λ.

If ∫ ∞
−∞
|λ|2nS(λ)dλ <∞ (3.3. 13)

then the n− th order derivative of {Xt} exists in a mean squared sense and is a w.s.s. process with
covariance given by

R(n)(t) =
∫ ∞
−∞

(4π2λ2)nS(λ)ei2πλtdλ (3.3. 14)

Proof: First note that by Bochner’s theorem:

R(t) =
∫ ∞
−∞

ei2πλtS(λ)dλ

Hence:

− d2

dt2
R(t) =

∫ ∞
−∞

(2πλ)2ei2πλtS(λ)dλ

Since S(λ) ≥ 0 for all λ it implies that λ2S(λ) ≥ 0 or 4π2λ2S(λ) is a spectral density and thus
− d2

dt2
R(t) is a covariance which is the covariance function of Ẋt from Proposition 3.2.1. Let us denote

it by R(1)(t). Hence
∫∞
−∞ λ

2S(λ)dλ < ∞ implies that R(1)(0) < ∞. Noting that |R(t)| ≤ R(0) this
means that the process is well defined as a second order process.

Similarly the negative of the second derivative of R(1)(t) will also define a covariance which by
the argument in Proposition 3.2.1 can be identified as the covariance of the second derivative of the
process which is well defined if

∫∞
−∞(2πλ)4S(λ)dλ <∞ and so on. Repeating the arguments we see

that the condition given assures that the 2n − th derivative of R(t) is defined which can then be
associated with the n− th derivative of Xt.
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Examples:
Suppose that the spectral density of a w.s.s. process is a rational function and the difference

between the order of the denominator polynomial and the numerator polynomial (in powers of λ)
is 2m. Then the process is (m − 1) times differentiable since multiplying the spectral density by
λ2(m−1) will leave the order of the denominator polynomial larger by λ2 which will make the integral
finite.

Here is an example of a process for which a derivative cannot be defined.
Let {Xt} be a w.s.s. Gaussian stochastic process with spectral density:

S(λ) =
2k

k2 + 4π2λ2
; −∞ < λ <∞

Then clearly: ∫ ∞
−∞

λ2S(λ)dλ =∞

or the derivative cannot be defined.
This is a well known process which we have seen earlier. Taking inverse Fourier transforms gives

R(t) = e−k|t|

which implies that it is a Gauss Markov process.
Finally an example of a process which is infinitely differentiable is a Gaussian process with

spectral density
S(λ) = e−|λ|

In fact if the spectral density is a rational function then only a finite number of derivatives of
the process can be defined as seen above.

Suppose Xt is a w.s.s. process whose spectral density S(λ) is band-limited to [−B,B], i.e. its
spectrum has compact (finite) support. In that case it is easy to see that such a process possesses
derivatives of all orders in an L2 sense. Such a process is said to be analytic in L2.

This concludes our introduction to spectral theory of processes. In the sequel we will apply these
results in the context of estimation as well as signal representation.

3.3.3 Ergodic theorems revisited

In light of the results above we can re-state the conditions for ergodic theorems holding in the mean
squared sense.

First note that the sufficient condition for the existence of spectral densities in both the Herglotz
theorem and the Bochner theorem imply the necessary and sufficient condition for convergence of
sample means to the true means (Proposition 2.6.3) in the mean square. Hence, the existence of
a spectral density implies that the process satisfies the law of large numbers in the mean squared
sense.

The condition that R(k) ∈ `1 (or R(t) ∈ L1) is actually stronger than the conditions as stated in
Proposition 2.6.3. It turns out that the condition in (2.6.3) corresponds to continuity of the spectral
distribution at the origin i.e. at 0. We state the result below.

Proposition 3.3.8 A necessary and sufficient condition for the sample-mean of a w.s.s. process
(discrete or continuous-time) to converge to the mean in the mean square is that the spectral distri-
bution be continuous at {0} i.e. F ({0}) = 0.
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Proof: We will only give the proof in the discrete case. The continuous-time analog is similar. By
proposition 2.6.3. the necessary and sufficient condition is

lim
n→∞

1
n

n−1∑
k=0

R(k) = 0

Let us use the Herglotz theorem to rewrite this condition.

1
n

n−1∑
k=0

R(k) =
1
n

n−1∑
k=0

∫ 1
2

−1
2

eik2πλdF (λ)

=
∫ 1

2

−1
2

1
n

(
n−1∑
k=0

ei2πλk
)
dF (λ)

Define φn(λ) = 1
n

∑n−1
k=0 e

i2πλk.
Then

φn(λ) = 1 λ = 0

=
1
n

ein2πλ − 1
ei2πλ − 1

λ 6= 0

But

|φn(λ)| ≤
∣∣∣∣ sinnπλn sinπλ

∣∣∣∣
≤ π

2

∣∣∣∣sinnπλnπλ

∣∣∣∣
≤ π

2
where we used the following fact:

| sinλ| ≥ 2
π
|λ| for |λ| ≤ π

2
.

Therefore limn→∞ φn(λ) → 1{0}(λ). Therefore the condition that limn→∞
1
n

∑n−1
k=0 R(k) = 0 is

equivalent to

lim
n→∞

∫ 1
2

−1
2

φn(λ)dF (λ) =
∫ 1

2

−1
2

1{0}(λ)dF (λ) = 0

or the spectral measure is continuous at {0}. The interchange of the limit in the integral follows by
dominated convergence since the spectral measure is finite.

Finally we conclude with an important result due to Maruyama which establishes strict ergodicity
in the case when the process {Xt} is Gaussian. Note since it is Gaussian, w.s.s implies strict sense
stationarity. We state the result without proof.

Proposition 3.3.9 Let {Xt} be a stationary Gaussian process. If the spectral measure or distri-
bution is continuous everywhere (in (−1

2 ,
1
2 ] in the discrete-case and in (−∞,∞) in the continuous

time case) then the process is ergodic and hence Proposition 2.6.5(b) holds.

Remark: As a consequence of the above result, if a Gaussian process possesses a spectral density
it is ergodic.
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3.4 Nyquist sampling principle for w.s.s. processes

It is convenient to discuss this first in the context of deterministic signals. Suppose {Xt} is a
deterministic process whose Fourier transform has compact support in [−B,B]. i.e. the Fourier
transform vanishes (equals 0) outside the given interval. Then 2B is referred to as the band-width of
the signal. Now the well known theorem due to Nyquist states that sampling the process at instants
faster than or equal to 1

2B (called the Nyquist rate) allows us to completely reconstruct the signal
in an L2 sense i.e. there is no loss of energy (by Parseval’s theorem). This result has a stochastic
counterpart for w.s.s. signals called the Shannon-Nyquist Sampling Theorem.

Proposition 3.4.1 Let {Xt;−∞ < t < ∞} be a zero mean w.s.s. process whose spectral density
S(ω) vanishes outside [−B,B]. Then:

Xt = l.i.mN→∞

N∑
−N

X(
n

2B
)
sinπ(2Bt− n)
π(2Bt− n)

(3.4. 15)

where X( n
2B ) denotes the samples of {Xt} taken every 1

2B units of time and l.i.m denotes the limit
in q.m.

Proof: The proof esentially uses the sampling theorem in the deterministic context and Bochner’s
theorem.

Let P (λ) denote the spectral density. Then if R(t) denotes the covariance of {Xt} by Bochner’s
theorem:

R(t) =
∫ B

−B
ei2πλtP (λ)dλ

due to the compact support of P (λ) in [−B,B].
Now for λ ∈ [−B,B] we expand ei2πλt in a Fourier series in λ i.e.

ei2πλt =
∑
n∈Z

an(t)ei
2πnλ
2B

where {an(t)} denote the Fourier coefficients and are given by:

an(t) =
1

2B

∫ B

−B
ei2πλ(t− n

2B
)dλ

=
sinπ(2Bt− n)
π(2Bt− n)

Now substituting for ei2πλt in the resperentation for R(t) we obtain:

R(t) =
∫ B

−B

∑
n∈Z

an(t)ei
2πλn
2B P (λ)dλ

=
∑
n∈Z

an(t)
∫ B

−B
ei

2πλn
2B P (λ)dλ

=
∑
n∈Z

an(t)R(
n

2B
)
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The above is just a statement of the deterministic or Nyquist sampling theorem for the deterministic
function R(t) whose Fourier transform (the spectral density) has support in [−B,B].

First let us note some properties of the functions an(t). From the definition of an(t) it follows
that an(t− m

2B ) = an+m(t) and furthermore:

R(t− m

2B
) =

∑
n∈Z

an(t− m

2B
)R(

n

2B
) =

∑
n∈Z

an(t)R(
n−m

2B
)

. Using the above properties it readily follows that∑
n

an(t)an+m(t+ s) = am(s)

and ∑
n

an(t)R(t− n

2B
) = R(0)

noting that the implicit assumption is the Fourier series representation for ei2πλt for λ ∈ [−B,B].
Hence let us show that E|Xt −

∑N
n=−N an(t)X( n

2B )|2 → 0 as N → ∞. Let ZN (t) = Xt −∑N
n=−N X( n

2B )an(t) then

E[Z2
N (t)] = E|Xt|2 − 2

N∑
n=−N

an(t)E[XtX(
n

2B
)] +

N∑
n=−N

N∑
m=−N

an(t)am(t)E[X(
n

2B
)X(

m

2B
)]

= R(0)− 2
N∑

n=−N
an(t)R(t− n

2B
) +

N∑
n=−N

N∑
m=−N

an(t)am(t)R(
n−m

2B
)

Noting that
∑
n∈Z an(t)R(t− n

2B ) = R(0) and

∑
n∈Z

∑
m∈Z

an(t)am(t)R(
n−m

2B
) =

∑
m∈Z

am(t)

(∑
n∈Z

an(t)R(
n−m

2B
)

)

=
∑
m∈Z

am(t)R(t− m

2B
)

= R(0)

Note in the above the order of taking the summations does not matter.
Taking limits as N →∞ above we see that

lim
N→∞

E|Xt −
N∑

n=−N
an(t)X(

n

2B
)|2 = 0

and the proof is complete.

Remark 3.4.1 From the definition of an(t) and Plancherel-Parseval formula it is easy to see that:∫ ∞
−∞

an(t)am(t)dt = 0 n 6= m

= Const(n) n = m
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Which means that {an(t)} form orthogonal functions on L2(−∞,∞), and indeed can be shown
to be a basis for all L2(−∞,∞) functions whose Fourier transform vanishes outside [−B,B].

Hence we have: ∫ ∞
−∞

Xtam(t)dt = X(
m

2B
)

or the sampling theorem is a Fourier expansion of Xt in terms of the basis {an(t)} with Fourier
coefficients X( n

2B ).

Let us now study the issue of sampling a w.s.s. process at intervals of 1
2B units of time when

in fact the spectral density has a support of greater than 2B. In fact we consider a process whose
spectral density is not necessarily band limited. The interesting questions that arise are what is the
resulting spectral density of the sampled process and the mean squared error?

Let X̂t denote the approximation obtained based on sampling a w.s.s. process Xt every 1
2B units

of time using the approximating formula:

X̂t =
∑
n∈Z

X(
n

2B
)an(t)

where an(t) are the functions defined above.
Let us first show that X̂t is indeed a w.s.s. process.
Now,

E[X̂tX̂t+s] = E[
∑
n∈Z

∑
m∈Z

an(t)am(t+ s)X(
n

2B
)X(

m

2B
)]

=
∑
n∈Z

∑
m∈Z

an(t)am(t+ s)R(
n−m

2B
)

We now use Bochner’s theorem to represent R(n−m2B and then

R̂(t, t+ s) =
∫ ∞
−∞

∑
n∈Z

∑
m∈Z

(
an(t)am(t+ s)ei

2πλ
2B ne−i

2πλ
2B m

)
P (λ)dλ

Now the term in the integrand in brackets is periodic in 2B since ei
2πλ
2B = ei

2π(λ+2kB)
2B and therefore

the above integral can be written is:

R̂(t, t+ s) =
∫ B

−B

∑
n∈Z

∑
m∈Z

ei
2πλ
2B ne−i

2πλ
2B m

∑
k∈Z

P (λ+ 2kB)dλ

Now using the fact that for λ ∈ [−B,B]
∑
n∈Z an(t)ei

2πλ
2B n = ei2πλt we have

R̂(t, t+ s) =
∫ B

−B
e12πλs

∑
k∈Z

P (λ+ 2kB)dλ

Noting that the r.h.s only depends on s and not t via Bochner’s theorem we conclude that R̂(t, t+s) =
R̂(s) or the process is w.s.s. with spectral density

∑
k∈Z P (λ+ 2kB).

From the above form of the spectral density for the approximation it can readily be seen that if
the support of the spectral density of Xt is contained in [−B,B] then the process X̂t has the same
spectral density or is completely recovered in an L2 sense while if the support is larger then there
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is contribution of the spectral density outside [−B,B] shifted by 2kB. This phenomenon is termed
aliasing and hence we do not recover the original process.

Let us now compute the mean squared error corresponding to the variance of the difference
process zt = Xt − X̂t.

Now E[|Xt − X̂t|2 = E[X2
t ] + E[X̂2

t ]− 2E[XtX̂t]. Noting that

E[XtX̂t] =
∑
n∈Z

an(t)R(t− n

2B
)

and
E[X̂2

t ] =
∑
n∈Z

∑
m∈Z

an(t)am(t)R(
n−m

2B
) = R(0)

we obtain:

E[z2
t ] = 2R(0)− 2

∑
n∈Z

an(t)R(t− n

2B
)

=
∫ ∞
−∞

(2− 2
∑
n∈Z

an(t)ei2πλ(t− n
2B

))P (λ)dλ

=
∫ ∞
−∞

(1−
∑
n

an(t)ei2πλ(t− n
2B

))2P (λ)dλ

=
∫ B

−B

∑
k∈Z

(1−
∑
n∈Z

an(t)ei2π(λ+2kB)(t− n
2B

))2P (λ+ 2kB)dλ

=
∫ B

−B

∑
k∈Z

(1− ei4πkBt)2P (λ+ 2kB)dλ

= 4
∫ B

−B

∑
k∈Z

sin2(2πkBt)P (λ+ 2kB)dλ

where we have used Bochner’s theorem and the fact that for λ ∈ [−B,B] the term
∑
n∈Z an(t)e−i

2πλ
2B n =

e−2πλt and ei4πkn = 1.
It is interesting to note from above that although {Xt} and {X̂t} are individually w.s.s. they are

not jointly so.

Let us now consider the problem of interpolation i.e. starting out with a discrete-time process
we use the approximating formula to obtain a continuous time process. We state this result as a
proposition.

Proposition 3.4.2 Let {Xn}∞n=−∞ be a w.s.s. sequence with spectral density P (λ), λ ∈ [−1
2 ,

1
2 ].

Define the continuous time process {Xt;−∞ < t <∞} by

Xt = l.i.m
N∑

n=−N
Xn

sinπ(2Bt− n)
π(2Bt− n)

(3.4. 16)

Then {Xt} is w.s.s. process with spectral density:

S(λ) =
1

2B
P (

λ

2B
) |λ| ≤ B

= 0 otherwise
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Proof: By definition of {Xt} we have:

E[XtXt+s] =
N∑

n=−N

N∑
m=−N

an(t)am(t+ s)R(n−m)

Using the Herglotz theorem to represent R(n−m) we obtain:

E[XtXs] = lim
N→∞

∫ 1
2

− 1
2

N∑
n=−N

N∑
m=−N

an(t)am(t+ s)ei2πλ(n−m)P (λ)dλ

= lim
N→∞

1
2B

∫ B

−B

N∑
n=−N

an(t)ei2π
f

2B
n

N∑
m=−N

am(t+ s)a−i2π
f

2B
mP (

f

2B
)df

=
1

2B

∫ B

−B

∑
n∈Z

an(t)ei2π
f

2B
n
∑
m∈Z

am(t+ s)e−i2π
f

2B
mP (

f

2B
)df

=
1

2B

∫ B

−B
ei2πfsP (

f

2B
)df

and hence by Bochner’s theorem Xt is w.s.s. with spectral density as announced.

Remark 3.4.2 Note that by construction {Xt} is a band-limited process with bandwidth 2B.

Shannon-Nyquist sampling provides the theoretical basis for most statistical signal processing
algorithms because physical signals have finite energy and thus unless their spectral density vanishes
at a sufficiently fast rate they will violate the finite energy constraint. Indeed most practical signals
can be assumed to to have finite bandwidth.

Given the importance of Markov models in applications it will then come as a surprise to note
that if Xt is a w.s.s. process and is Markov, then it cannot be reconstructed via Nyquist sampling
in an L2 sense or equivalently such processes cannot be bandlimited.

The simplest case to observe this is the Gauss-Markov model. We know from Proposition 2.4.2
that if Xt is a stationary Gauss-markov process then its covariance is given by R(t) = Ce−β|t| where
C = var(Xt) and β = − ln R(1)

C . The spectral density is thus given by:

S(λ) =
2Cβ

β2 + 4π2λ2
, −∞ < λ <∞

and thus the spectral density has infinite support and thus cannot be recovered without error using
any finite sampling rate.

Let us show this result more generally for any w.s.s. Markov process.

Proposition 3.4.3 Let {Xt,−∞ < t < ∞} be a w.s.s. Markov process and {XnT } be the samples
of {Xt} sampled at instants nT, n = 0,±1,±2·. The Xt cannot be recovered exactly in an L2 sense
by Shannon-Nyquist sampling.

Proof:
The proof essentially follows from the Markov property and the minimality of the conditional

expectation with respect to the mean squared error criterion.
Indeed let f(XnT , |n| ≤ N) denote a functional consisting of 2N + 1 samples that include t.
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Then we know that E[(Xt − f(XnT , |n| ≤ N))2] is minimized when :

f(XnT , |n| ≤ N) = E[Xt|XnT , |n| ≤ N ]

But from the Markov property the conditional distribution only depends on XmT and X(m+1)T where
t ∈ [mT, (m+ 1)T ]:

E[Xt|XnT , |n| ≤ N ] = g(Xmt, X(m+1)T )

for some measurable function g(.).
Therefore from the minimizing property of the conditional expectation we have:

0 < E[(Xt − g(XmT , X(m+1)T )2] ≤ E[(Xt −
N∑

n=−N
an(t)XnT )2]

since by definition the conditional distribution of Xt given XmT , X(m+1)T is assumed to be strictly
positive from the Markov property.

Now taking limits as N →∞ and noting that the l.h.s. does not depend on N we have that

lim inf
N→∞

E[(Xt −
N∑

n=−N
an(t)XnT )2] > 0

which shows that the process cannot be recovered without error for any finite T in the L2(IP) sense
as we have shown for w.s.s. processes with spectral density of finite support.

We conclude this section by discussing the sampling principle for processes whose spectral density
is defined only for certain pass-bands i.e. processes whose spectral density is non-zero only in the
region [−B−B0,−B0+B] and [B0−B,B0+B]. Such processes arise in communications applications
where the energy of a signal is concentrated around a given frequency called the base frequency. This
is typically the case when a so-called base-band signal is modulated by a high frequency signal of
frequencyB0. Of course we can use the above sampling theorem and conclude that we can reconstruct
the process if we sample at rate 1

2(B+B0) . If B0 is large then this will entail sampling at a very high
rate and it does not take into account that the spectral density is 0 between [−B0 +B,B0 −B]. In
fact it can be shown that the signal can be recovered by sampling at the rate 1

2B which can represent
a considerable saving if B0 is large in comparision to B. The basic idea is that by modulating the
signal at a frequency of B0 we can shift the spectrum to lie between [−B,B] and then apply the
above result.

3.5 Karhunen-Loeve expansions for 2nd. order processes

One can exploit the property that 2nd. order processes are defined on Hilbert spaces to obtain
representations of 2nd order processes in terms of collections of uncorrelated random variables much
akin to the Fourier series representations for deterministic signals defined on a finite interval.

Let us begin by studying a simple case. Let {Xt ;−∞ < t < ∞ be a zero mean w.s.s. process
whose covariance is periodic with period T i.e. R(t + kT ) = R(t). We can exploit this periodicity
of the covariance to express the process {Xt} in terms of a Fourier series whose coefficients are
uncorrelated r.v’s.

First note since R(t) is periodic in T we can represent it by a Fourier series on [0, T ]. Let [f.g] =
1
T

∫ T
0 f(t)ḡ(s)ds denote the inner-product on L2[0, T ] where ḡ(t) denotes the complex conjugate of
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g(t). Let {φn(t)} denote a C.O.N.S. (complete orthonormal system) on L2[0, T ]. In fact φn(t) can
be taken as einω0t;ω0 = 2π

T which is complete in L2[0, T ]. Then

R(t) =
∑
n∈Z

[R,φn]φn(t)

where [R,φn] = Rn denotes the nth. Fourier coefficient.
We can then show the following result:

Proposition 3.5.1 Let {Xt ;−∞ < t < ∞} be a zero mean w.s.s. process whose covariance R(t)
is periodic with period T .

Then

Xt = l.i.m.
N∑

n=−N
Xne

inω0t ; ω0 =
2π
T

(3.5. 17)

where {Xn} is a collection of uncorrelated r.v’s with E[X2
n] = Rn where Rn is the Fourier coefficient

corresponding to the Fourier series for R(t).

Proof: Define Xn = [X,φn] where φn(t) = einω0t. Then:

E[XnX
∗
m] =

1
T 2

∫ T

0

∫ T

0
E[XtXs]eiω0(ms−nt)dtds

=
1
T 2

∫ T

0

∫ T

0
R(t− s)e−inω0teimω0sdtds

=
1
T

∫ T

0
R(t)e−inω0tdt[φn, φm]

= Rnδn,m

Thus showing that the {Xn}′s form a collection of uncorrelated r.v’s with E[X2
n] = Rn. Finally

as in the previous section noting that R(0) =
∑
n∈Z Rn we obtain that

lim
N→∞

E[|Xt −
N∑

n=−N
Xnφn(t)|2] = 0

proving the result.

Actually such a representation holds for any second order process without the requirement that
it be w.s.s. for every finite interval of time. This important result is known as the Karhunen-Loeve
expansion and is the basis for decomposing signals in terms of uncorrelated r.v’s which has important
implications in vector quantization of signals to achieve minimum mean squared distortion.

Before we develop the Karhunen-Loeve expansion we will see some properties associated with
covariance operators or kernels.

Let {Xt; t ∈ [0, T ]} be a zero mean second-order process with covariance R(t, s) = E[XtX
∗
s ].

Then R(t, s) is defined for (t, s) ∈ [0, T ] × [0, T ]. Then the fundamental property of a covariance
operator is that it be a non-negative definite operator i.e. for every f ∈ L2[0, T ] where L2[0, T ] =
{f(.) :

∫ T
0 |f(t)|2dt < ∞ we have: [Rf, f ] =

∫ T
0

∫ T
0 R(t, s)f(s)f∗(t)dsdt ≥ 0. Also the property that∫ T

0

∫ T
0 R(t, s)dsdt <∞ implies that we can find a sequence of functions {φk(t), 0 ≤ t ≤ T} such that

||φk||2 =
∫ T
0 |φk(t)|2dt = 1 and [φk, φm] = 0 for k 6= m and

Rφk =
∫ T

0
R(t, s)φk(s)ds = λkφk(t)
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where λk ≥ 0 i.e. λk is an eigenvalue corresponding to the eigenfunction φk(t) for the operator R.
This is exactly analogous to the case when R is a non-negative definite matrix. Moreover it can
be shown that the functions {φk(t)} are ”complete” in L2[0, T ] in the sense that for any function
f ∈ L2[0, T ] [f, φk] = 0implies||f ||2 = 0. Another important property of such covariance kernels is
that

Trace(R) =
∫ T

0
R(t, t)dt =

∞∑
k=0

λk <∞

which corresponds to the analog for matrices that the trace is the sum of the eigenvalues. This
implies that limk→∞ λk = 0. Now let us examine what a zero eigenvalue for R means for the process.

E[[φk, X]2] = E[
∫ T

0

∫ T

0
φk(t)X∗t φk(s)

∗Xsdtds]

=
∫ T

0

∫ T

0
φk(t)R(s, t)φ∗k(s)dsdt

=
∫ T

0
λkφk(s)φ∗k(s)ds

= λk

and hence λk = 0 implies that the r.v. has variance 0 and hence is almost surely 0 and hence we
can neglect the 0 eigenvalue terms.

Now let {Xt; t ∈ [0, T ]} be s second-order process with covariance R(t, s). Suppose that we can
find a representation of the form:

Xt = l.i.m.
N∑
n=0

Znϕn(t)

where {ϕn(t)} are orthonormal in L2[0, T ] and {Zn} are uncorrelated r.v’s.. Let us see what con-
straints it puts on the r.v’s and the functions ϕn(t). Let λn = E[ZnZ∗n] the variance (assuming that
Xt is zero mean) of Zn. Then:

E[XtX
∗
s ] =

∞∑
n=0

λnϕn(t)ϕ∗n(s)

and therefore ∫ T

0
R(t, s)ϕn(s)ds =

∞∑
m=0

λmϕm(t)[ϕm, ϕn]

= λnϕn(t)

by the orthogonality of the functions ϕn(t). Hence from above it implies that ϕn(t) = φn(t) where
φn(t) are the eigenfunctions of R(t, s) with λn the corresponding eigen values.

The above arguments motivate the Karhunen-Loeve expansion. Before we state the theorem
we give another important result which can be seen as a result of the above. This result is called
Mercer’s theorem which we state separately since it is of independent interest.

Theorem 3.5.1 Let R(t, s); (t, s) ∈ [0, T ]× [0, T ] be a continuous covariance kernel. Then

R(t, s) =
∞∑
n=0

λnφn(t)φ∗n(s) (3.5. 18)

uniformly in 0 ≤ s, t ≤ T where φn(t) are the eigenfunctions of R(t, s) with corresponding eigenvalue
λn.
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The idea behind the proof is the following: by the property that
∫ T

0

∫ T
0 |R(t, s)|dtds <∞ it can

be shown that
λ0 = max

||φ||=1
[Rφ, φ]

exists. Let φ0 denote the function for which the max is achieved. Then
∫ T

0 R(t, s)φ0(s)ds = λ0φ0(t).
Now define:

R1(t, s) = R(t, s)− λ0φ0(t)φ∗0(s)

Then R1(t, s) defines a covariance function by noting the following: define the process:

Yt = Xt −
∫ T

0
Xsφ

∗
0(s)dsφ0(t)

Then the covariance of Yt is just R1(t, s). Now since R1(t, s) is a covariance we can define the largest
eigenvalue λ1 as above and then:

R2(t, s) = R1(t, s)− λ1φ1(t)φ∗1(s)

will define a covariance with the additional property that λ1 will be an eigenvalue of R(t, s) cor-
responding to the eigenfunction φ1(t) while φ0(t) will belong to the kernel (corresponding to the
eigenvalue 0) of R1(t, s). Let us show this:

R1φ0 = Rφ0 − λ0φ0[φ0, φ0] = λ0φ0 − λ0φ0 = 0

and hence [R1φ1, φ0] = λ1[φ1, φ0] = [φ1, R1φ0] = 0 which implies that [φ1, φ0] = 0 from which it
follows that Rφ1 = R1φ1 = λ1φ1 or λ1 is also an eigenvalue of R with corresponding eigenfunction
φ1. Hence repeating these arguments will show that :

R(t, s) =
N∑
n=0

λnφn(t)φ∗n(s) +RN+1(t, s)

and then by the nuclearity condition (sum of all the eigenvalues is finite) it follows that limN→∞RN+1(t, s)
goes to zero uniformly.

Using the above observations we now state the Karhunen-Loeve Theorem.

Proposition 3.5.2 (Karhunen-Loeve Theorem)
Let {Xt; t ∈ [0, T ]} be a zero mean q.m.continuous process with covariance R(t, s). Then

a) Let {φn(t)} be the eigenfunctions of R(t, s) corresponding to eigenvalues {λn} i.e.

Rφn =
∫ T

0
R(t, s)φn(s)ds = λnφn(t); 0 ≤ t ≤ T

Define Zn(ω) =
∫ T

0 Xs(ω)φ∗n(s)ds. Then:

Xt(ω) = l.i.m
N∑
n=0

Zn(ω)φn(t) (3.5. 19)

where {Zn(ω)} form a sequence of uncorrelated r.v’s with E[ZnZ∗n] = λn and {φn(t)} are
orthonormal in L2[0, T ].
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b) If Xt(ω) has the expansion above such that {φn(t)} are orthonormal and {Zn} are uncorrelated
with variance λn then the pair (λn, φn(t)) must be an eigenvalue, eigenfunction pair for the
covariance R(t, s) on [0, T ]× [0, T ]

Proof: We will only prove part a) since the proof of part b) follows from the discussion before
Mercer’s theorem.

Let us first show that E[ZnZ∗m] = λnδn,m. Indeed,

E[ZnZ∗m] = E[
∫ T

0

∫ T

0
Xtφ

∗
n(t)X∗sφm(s)dtds]

=
∫ T

0

∫ T

0
R(t, s)φm(s)φ∗n(t)dtds = λm[φm, φn]

= λnδn,m

showing that the Z ′ns are uncorrelated with variance λn.
Now:

E|Xt −
N∑
n=0

Znφn(t)|2 = R(t, t)−
N∑
n=0

λn|φn(t)|2

which goes to zero uniformly in t as N →∞ by Mercer’s theorem.

Let us see some applications of the Karhunen-Loeve expansion.
Example 1: Let {Xt; t ∈ [0, T ]} be a zero mean q.m. continuous process with covariance R(t, s).
What is the best approximation of order 2 to the process {Xt} in L2[0, T ]?

From the Karhunen-Loeve expansion the best mean-squared approximation is just

X̂t = Z0φ0(t) + Z1φ1(t)

where E[Z0Z
∗
0 ] = λ0 where λ0 = max{λk} where λk’s are the eigenvalues of R(t, s) with correspond-

ing eigenfunction φk(t). Similarly λ1 should be taken as the next highest eigenvalue with φ1(t) the
corresponding eigenfunction. This follows from Mercer’s theorem since the approximation error is
just Trace(R)−

∑1
n=0 λn =

∑
n>1 λn.

Let us consider a more important example related to a series representation of the covariance of
a Wiener process or Brownian motion.

Example 2: Let {Xt; t ∈ [0, T ]} be a standard Brownian motion. Recall that {Xt} is a Gaussian
process with zero mean and covariance E[XtXs] = R(t, s) = min(s, t) denoted by st.

Let us begin by calculating the eigenvalues and eigenfunctions of the operator R given by:

Rφ = λφ

which is equivalent to: ∫ T

0
R(t, s)φ(s)ds = λφ(t); t ∈ [0, T ]

Substituting for R(t, s) we obtain:∫ t

0
sφ(s)ds+

∫ T

t
tφ(s)ds = λφ(t) (3.5. 20)
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The above is a so-called Fredholm integral equation which we can readily solve by differentiating
both sides and obtaining a differential equation as follows:

Differentiating the equation above once w.r.t t we obtain:∫ T

t
φ(s)ds = λφ′(t)

which still leaves us with an integral and so we differentiate it once more to obtain:

−φ(t) = λφ′′(t)

which is a second-order differential equation. To solve this we need two initial conditions which can
be obtained by inspection of the first two equations: i.e. φ(0) = 0 and φ′(T ) = 0.

The solution to 3.5. 20 for initial condition 0 is given by:

φ(t) = A sin
1√
λ
t (3.5. 21)

Applying the condition φ′(T ) = 0 gives

cos
1√
λ
T = 0

from which we obtain that the eigenvalues are given by:

λn =
T 2

(n+ 1
2)2π2

; n = 0, 1, 2, .... (3.5. 22)

and the normalized eigenfunctions (norm 1) are given by:

φn(t) =
√

2
T

sin
[
(n+

1
2

)π
t

T

]
(3.5. 23)

Hence by the Karhunen-Loeve theorem we obtain:

Xt =
l.i.m

N →∞

N∑
n=0

√
λnφn(t)Yn

where Yn are i.i.d. N(0,1) gaussian random variables.
It is interesting to note that although the sample-paths of Brownian motion are not differentiable

anywhere with respect to t from the Karhunen-Loeve theorem the r.h.s. is q.m. differentiable.
Finally we note by Mercer’s theorem we obtain the following representation for the covariance:

min(s, t) =
∞∑
n=0

2T
(n+ 1

2)2π2
sin
[
(n+

1
2

)π
t

T

]
sin
[
(n+

1
2

)π
s

T

]
(3.5. 24)

which is a purely analytical result which is hard to derive directly.
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3.6 Spectral representation of w.s.s. processes

The Bochner theorem (for continuous-time processes) and the Herglotz theorem (for discrete-time
processes) relate the covariances of w.s.s. processes to the spectral density in frequency domain i.e.
the spectral density is the Fourier transform of the covariance. The question that is natural to ask
is whether the Fourier transform of the original process is well defined when we view the process as
a function of the time index? This section is devoted to the study of this issue.

Let us begin by considering the continuous-time case. First note that for any deterministic
function of time such that

∫∞
−∞ |ft|2dt < ∞ the Fourier transform F̂ (λ) =

∫∞
−∞ fte

−i2πλtdt is well
defined. The original function can be recovered by taking the inverse Fourier transform given by∫∞
−∞ e

i2πλtF̂ (λ)dλ.
In the stochastic case the basic problem is that

∫∞
−∞ e

−i2πλtXtdt need not exist (because of the
infinite interval) and thus we cannot define the Fourier transform directly. To do so we need to define
a so-called generalized Fourier transform which is well defined called the spectral process. Then the
original process can be viewed as the inverse Fourier transform of the spectral process where the
equality holds in a quadratic mean sense.

We will first see the result in the discrete-time case.
Let us first recall the notion of an orthogonal increment process. Let Z(λ) be a zero-mean,

complex-valued stochastic process. Then Z(λ) is said to be a process with orthogonal increments
if: given (λ1, λ2]

⋂
(λ3, λ4] = ∅ then: E[(Z(λ2) − Z(λ1))(Z(λ4) − Z(λ3)∗] = 0 i.e. the process on

the non-overlapping intervals is uncorrelated. Let us furthermore impose the following condition:
E[(Z(λ2)−Z(λ1))(Z(λ2)−Z(λ1))∗] = E|Z(λ2)−Z(λ1)|2 = |λ2−λ1| i.e. the process has stationary,
orthogonal increments.

Let f(λ) be a continuous function on −1
2 ≤ λ ≤

1
2 . Define the stochastic integral:∫ 1

2

− 1
2

f(λ)dZ(λ)

where Z(λ) is the orthogonal, increment process defined above. Such an integral is well defined if∫ 1
2

− 1
2

|f(λ)|2dλ <∞ as we have seen.

Choose as the function f(λ) the function e2πnλ then let us define the following integral:

Xn =
∫ 1

2

− 1
2

ei2πnλdZ(λ) (3.6. 25)

By definition E[Xn] = 0 and

E[XnX
∗
m] = E[

∫ 1
2

− 1
2

∫ 1
2

− 1
2

ei2π(nλ−mν)dZ(λ)dZ(ν)]

=
∫ 1

2

− 1
2

ei2π(n−m)λdλ

= 0 if n 6= m

= 1 if n = m

implying that {Xn} is a sequence of uncorrelated, random variables indexed by n with variance 1
or a white noise sequence. This is the heart of the spectral representation theorem which we state
below:
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Theorem 3.6.1 Let {Xn} be a w.s.s., zero mean sequence of r.v’s with spectral density P (λ). Then
we can represent Xn in the mean squared sense as:

Xn =
∫ 1

2

− 1
2

ei2πnλψ(λ)dZ(λ) (3.6. 26)

where Z(λ) is a stationary, orthogonal increment process and

ψ(λ)ψ∗(λ) = P (λ) (3.6. 27)

It is enough to see that the l.h.s. and r.h.s are the same in quadratic mean via the definition of
Z(λ) and the Herglotz theorem.

The function ψ(λ) is called the spectral factor of P (λ) and the procedure is known as spectral
factorization. In particular ψ(λ) can be chosen to be stable when P (λ) is rational.

To see this we note that P (λ) being a spectral density must be non-negative for all λ ∈ [−1
2 ,

1
2 ]

and hence both the denominator and numerator polynomials (in λ) must be even. Furthermore if
e2πλ0 is a root of the denominator polynomial then e−2πλ0 must also be a root which implies that
if there exists a root within the unit circle there exists a corresponding root outside the unit circle.
Hence we can choose as ψ(λ) the rational function with all its roots in the denominator polynomial
and numerator polynomial within the unit circle implying that it is a stable, minimum phase (all
the roots of the numerator polynomial are within the unit circle).

Let us now see an example on how we can identify the ”transfer function ” ψ(λ)”.
Example: Let {Xn} be a stationary process defined by:

m∑
k=0

akXn−k = Wn (3.6. 28)

where {Wn} is a white noise sequence. Clearly since the process {Xn} is shationary and {Wn} is
stationary it is necessary that the ”system” defined by the sequence {ak} must be stable i.e. the
transfer function A(z) =

∑m
k=0 akz

−k must have all its roots within the unit circle . (This is just the
Wold decomposition for a purely non-deterministic process if we re write Xn in terms of the {Wn}).
Such a process is called a stationary AR (Auto Regressive) process.

Let us use the spectral representation theorem substituting for Xn to obtain:∫ 1
2

− 1
2

m∑
k=0

ake
i2π(n−k)λψ(λ)dz(λ =

∫ 1
2

− 1
2

ei2πnλdZ(λ)

The equality of the lhs. and the r.h.s implies that ψ(λ) =
[∑m

k=0 ake
−i2πkλ

]−1
. Defining z = ei2πλ

we see that all the roots of the denominator polynomial corresponding to ψ(z) = 1
A(z) are within the

unit circle implying that ψ(z) is stable system. From the isometry theorem we have:

A(e−i2πλ)A(ei2πλ)P (λ) = 1

In an analogous way we can define the spectral representation of a w.s.s. continuous-time process.
We state the result below.
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Proposition 3.6.1 Let {Xt,−∞ < t < ∞} be a w.s.s. continuous-time stochastic process whose
spectral density S(λ) satisies

∫∞
−∞ S(λ)dλ <∞. Then {Xt} can be written as:

Xt =
∫ ∞
−∞

ei2πλtψ(λ)dX̂(λ) (3.6. 29)

where:
ψ(λ)ψ(−λ) = S(λ) (3.6. 30)

and {X̂(λ);−∞ < λ <∞} is an orthogonal increment process satisfying:

E|X̂(λ)− X̂(ν)|2 = |λ− ν| (3.6. 31)

The use of the spectral representation is in the context of Wiener-Hopf filtering and other signal
processing issues which we will discuss elsewhere.

3.7 Long-range dependence and self-similarity

Long-range dependence is a phenomenon by which correlations in a process persist over long dura-
tions of time. In mathematical terms it means that the correlations between Xn and Xn+k decay
slowly in that even for k large the correlations are not negligible, i.e., when

∑∞
k=1R(k) =∞. When

correlations die away slowly they lead to special characteristics which can indeed have very impor-
tant consequences in practice. For example we have seen in Chapter 2 that if

∑∞
k=0R(k) <∞ where

R(k) is the covariance of a w.s.s. process then the SLLN holds for the empirical sum of the random
sequence. We also saw that we needed a second-order condition for the CLT to hold. On the other
hand when the correlations persist one would need inordinately large sample sizes to obtain good
estimates of means and variances from observed samples. We will now study these characteristics
in some detail and provide some precise definitions.

Definition 3.7.1 Let {Xk} denote a w.s.s. sequence. For each m = 1, 2, . . . , , define the m− level
aggregated process {X(m)

k }k=1 formed by taking the average of m samples at a time given by:

X
(m)
k =

Xm(k−1)+1 + · · ·+Xkm

m
, k = 1, 2, . . . (3.7. 32)

The sequence {X(m)
k } is thus formed from the original sequence averaging over non-overlapping

blocks of length m. Thus we can think of {X(m)
k } as viewed at a larger time scale of mk, i.e. each

unit of time or sample of the sequence X
(m)
k is actually composed of m samples of the original

sequence. This process can be repeated by averaging over m samples f the sequence X(m)
k to obtain

another sequence viewed at the time scale m2k and so on. This process of averaging is important
because it will allow us to study the phenomenon of long-range dependence.

First let us note that the sequence X(m)
k is also a second-order sequence with mean, E[X(m)

k ] =
E[Xk] and variance:

R(m)(0) =
R(0)
m

+
2
m2

m∑
k=1

R(k)(m− k)

=
R(0)
m

+
2
m

m−1∑
l=1

l∑
k=1

R(l)
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Now let us define the difference operator δ2gn = gn+1 − 2gn + gn−1. Then we have:

δ2(m2Rm(0)) = (m+ 1)2R(m+1)(0)− 2m2R(m)(0) + (m− 1)2R(m−1)(0)
= 2R(m)

From this we see that specifying R(m)(0) is equivalent to specifying R(m) or equivalently S(λ)
the spectral density.

Using the above we can also compute the covariance of the sequence X(m)
k as:

R(m)(k) =
1
2
δ2
(
k2R(km)(0)

)
Let us first note some simple consequences of the fact

∑
k R(k) <∞. From the Herglotz theorem

we have S(0) <∞. Furthermore limm→∞mR
(m)(0)→ R(0) + 2

∑∞
k=1R(k) <∞. One consequence

of this is that if {Xk} is a sequence of i.i.d. mean 0 variance 1 r.v’s then as m→∞ the m-aggregated
process goes to 0 in the mean square. We now define the notion of long-range dependence and study
some consequences.

Definition 3.7.2 A w.s.s. stochastic sequence or process {Xn} is said to be long-range dependent
if any of the following equivalent conditions hold:

i.
∑∞
k=0R(k) =∞

ii. S(λ) diverges at the origin

iii. mR(m)(0)→∞ as m→∞.

Remark 3.7.1 A very important class of processes is one whose covariance decays as a power-law
for large k i.e. R(k) ∼ ck−β for β ∈ (0, 1). For such processes it can be seen that R(m)(0) ∼ m−βc,
where c is a constant, as m → ∞. Such processes are usually termed asymptotically long-range
dependent processes.

Closely related to the notion of long-range dependence is the notion of self-similarity. In a crude
sense what self-similarity implies is that the process looks the same over all time scales i.e. no
matter whether the time-scale is long or short the process behaves statistically the same there is no
averaging out effect. Once again we need a few definitions:

Let H > 0 and let us define the following m-level aggregated process as in equation 3.7. 32
except that we divide the m samples by mH rather than m. i.e. let:

X
(mH)
k =

X
(m)
k

mH−1
(3.7. 33)

Definition 3.7.3 A discrete-time stochastic process {Xn} is said to be (exactly) self-similar with
self-similarity parameter H > 0, if for all m = 1, 2, · · · ,, the process {X(mH)

k } has the same finite
dimensional (joint) distributions as {Xk}.

Requiring exact self-similarity is usually too much. In most applications we need a weaker form
of 2nd. order self-similarity which we define below.

Definition 3.7.4 A w.s.s. process {Xk} is said to be 2nd. order self-similar with self-similarity
parameter H > 0 if {X(mH)

k } has the same covariance as {Xk}.
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Suppose that {Xk} is a second-order self-similar process. Since X(m)
k = mH−1X

(mH)
k it follows

that:
R(m)(0) = m2H−2Rm

H
(0) = m2H−2R(0)

Let β ∈ (0, 2) and let H = 1− β
2 . Then we see that R(m)(0) = m−βR(0). From the remark 3.7.1

we see that if β ∈ (0, 1) the process is also long-range dependent.
An equivalent definition of (exact) second-order self-similarity is that {Xk} is 2nd order self-

similar with self-similarity parameter H = 1− β
2 for β ∈ (0, 2) if R(m)(0) = m−βR(0).

Using the fact that R(m)(k) = δ2

2 (k2Rkm(0)) we can show that if a process is second-order
self-similar with parameter H = 1− β

2 we have: R(m)(k) = 1
2δ

2(k2H). Hence:

R(m)(k) =
1
2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
, k = 0,±1,±2, · · · ,

Note when H = 1 the process is un-correlated.
The definition of long-range dependence and self-similarity for continuous-time processes is sim-

ilar except that we now do not need m to be an integer. We define the notion of self-similarity
below:

Definition 3.7.5 A continuous time process {Xt}t≥0 is self-similar with parameter H > 0, if for all
a > 0 the finite dimensional distributions of {Xat} and {aHXt} are identical. If the sorresponding
result holds only for moments of order up to 2 then the process is said to be second-order self-similar.

A canonical example of a self-similar and long-range dependent process is a Gaussian process
called Fractional Brownian Motion. It is self-similar with parameter H and long-range dependent if
H ∈ (1

2 , 1).

Definition 3.7.6 A stochastic process {WH
t }t≥0 is said to be a Fractional Brownian Motion (ab-

breviated as fbm) if:

i. For each t, WH
t is Gaussian with zero mean.

ii. WH
0 = 0 a.s..

{WH
t } has stationary increments and the increment WH

t+s−WH
s is distributed N(0, σ2t2H), H > 0

From the definition, it can be easily seen that if H = 1
2 then WH is a Brownian motion. The

parameter H related to the covariance plays an important role in the theory of long-range dependent
and self-similar processes. It is called the Hurst parameter, after a British scientist who studied the
level of the Nile river in the Sudan in the late 1800’s.

A discrete-time counter part of fbm constructed by defining Xn = WH
n −WH

n−1, n = 1, 2, ... is
called fractional Gaussian noise.

A natural question that one should ask is whether self-similarity and long-range dependent
processes are common. It turns out, self-similar processes are natural limits of normalized partial
sums of strictly stationary random variables. This important result is due to Lamperti which we
state below.

Proposition 3.7.1 Let {Yt} be a stochastic process such that Y1 6= 0 with positive probability.
Assume that {Tt} is the limit in distribution of the following normalized partial sums :

Yt = a−1
n

bntc∑
k=1

Xi, n = 1, 2, · · · , (3.7. 34)
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where bntc denotes the integer part of nt and {Xk} is a stationary sequence of r.v’s and a1, a2, · · · ,
is a sequence of positive normalizing constants such that log an → ∞ as n → ∞. Then there exists
an H > 0 such that for any u > 0

lim
n→∞

anu
an

= uH

and {Yt} is a self-similar process with stationary increments and self-similarity parameter H. Ad-
ditionally, all self-similar processes with stationary increments and H > 0 can be obtained as limits
in distribution of such partial sums.

Thus long-range dependence can obtained as a limit of sums of random variables which have
heavy-tails by which we mean P (X > t) ∼ ct−β for some β ∈ (0, 2).

This study of long-range dependence and self-similarity is a very rich and active subject but we
will leave our discussion here and defer to more advanced books.

This concludes our study of the basic results in the study of second-order processes. In the sequel
we will apply these results to problems arising in the filtering,prediction and smoothing of random
signals in the presence of additive noise.
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Problems

1. Test whether each of these functions can be the covariance function of some w.s.s. process.

(a) R(t, s) = 1− |t− s|, 0 ≤ |t− s| ≤ 1 and R(t, s) = 0 otherwise.

(b) R(t, s) = e−a|t−s|, −∞ < t, s <∞
(c) R(t, s) = 1, 0 ≤ |t− s| ≤ 1 and R(t, s) = 0 otherwise.

2. Let R(t) be the covariance of a w.s.s. process and
∫∞
−∞ |R(t)|dt <∞.

Define:
RT (t) = R(t)1[|t|≤T ]

i.e. we truncate the covariance to a finite interval. Show that RT (t) need not define a covariance
function.

Hint: Consider RT (t) = 1, |t| ≤ T and RT (t) = 1− |t|T
3. Show that the following function cannot be the covariance function of any discrete-time process:

R(n) = π n = 0
= 2 n = ±5
= 3 n = ±15
= 0 for all other n

4. Let {Sn} be a stationary stochastic sequence with spectral density p(λ). Define, for fixed B,
the continuous-time stochastic process {Xt} by:

Xt =
∑
k∈Z

Sn
sinπ(2Bt− n)
π(2Bt− n)

−∞ < t <∞

where the convergence of the infinite series is in the mean squareed sense. Find the covariance
of Xk∆ for fixed ∆ and 2B∆ ≤ 1. Specialize the result when

p(λ) = 1 λ ∈ [−1
2
,
1
2

]

5. Show that if R(t, s), −∞ < t, s <∞ is a covariance function so is aR(at, as) for any a > 0.

6. Let {Wt} be a standard Brownian motion. Let:

X(t) = sin(2πft+Wt), t ≥ 0

Calculate the mean and covariance of X(t).

Show that:

lim
t→∞

E[X(t)] = 0

lim
T→∞

R(T, T + t) = =
cos(2πft)

2
e−

|t|
2

or the process is asymptotically w.s.s.
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7. A stochastic process is called lognormal if it is of the form:

Y (t) = eX(t), −∞ < t <∞

where X(t) is a Gaussian process with mean m and covariance R(τ) = cov[X(t)X(t+ τ)].

Find the mean and covariance of y(t). Does the spectral density exist? If so, compute it.

8. Let ξk be an iid sequence with mean 0 and variance σ2. Let x(t) be a stationary Gaussian
process with mean 0 and spectral density S(λ).

Define:

Xn = X(
n∑
k=1

ξk)

Find the mean and covariance of {Xn}.
The process {Xn} is a randomly sampled version of X(t).

9. Let X(t) be a 0 mean w.s.s. process with covariance R(τ).

Show that if:
R(0) = R(1)

then:

R(t) =
∞∑
0

a2
n cos 2πnt;

∞∑
0

a2
n <∞

10. Let R(t), −∞ < t < ∞ bethe covariance of a w.s.s. process with
∫∞
−∞ |R(t)|dt < ∞. Assume

R′′(t) exists.

Show that:
R′(t)
t
≥ R′′(0)

and
R′′(t) ≥ R′′(0), t ≥ 0

11. Let {Xn} be a 0 mean w.s.s process with covariance function R(τ). and spectral density S(λ).

Define:
Y (t) = X(t+ C)−X(t− C); C > 0

Find RY (τ) and SY (λ) the covariance and spectral density of Y (.).

12. Let n(t) be a white noise process with mean 0 and covariance δ(t− s) (Dirac delta). Suppose
n(.) is the input to two LTIC systems with impulse responses h(t) and g(t) respectively with
corresponding outputs X(.) and Y (.) respectively.

Show that X(.) and Y (.) are jointly w.s.s. and find E[X(t)Y (t+ τ)].

13. Let {Xn} be a real-valued stationary process with mean 0 and covariance E[XnXn+k] = R(k)
with R(0) <∞.

Let

Yn =
∞∑
k=0

akXn−k, n = 0,±1, . . . ,
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be a stochastic process defined from the stationary sequence {Xk} with
∑∞
k=0 |ak| <∞. Find

the covariance Ry(k) of {Yn} and show that the sequence {Yn} satisfies the SLLN.

Hint:
∑∞
k=0 |ak| <∞ implies that

∑∞
k=0 |ak|2 <∞

14. Let X(t),−∞ < t < ∞ be a zero mean w.s.s. process with spectral density S(λ) that is not
necessarily bandlimited.

Define the following process:

X̂(t) =
∞∑

n=−∞
X(

n

2B
)an(t), −∞ < t <∞

where an(t) = sin(π(2Bt−n))
2π(2Bt−n) .

Find the variance of X̂(t). What do you observe?

15. Show that the function
R(t) = e−t

2

can be the covariance function of a w.s.s. process.

16. Let {Xn} be a 0 mean stationary Gauss-Markov sequence with covariance function

Rx(k) = ρ|k| ; k = 0,±1,±2, . . . ,

with ρ < 1. The sequence {Xn} is the input to a linear, time-invariant and causal (LTIC)
system whose impulse response is

hk =
1
ak
, k ≥ 0

with a > 1. The corresponding output is denoted by {Yn}.
Find the variance RY (0). Show that the output {Yn} satisfies the Strong Law of Large Numbers
(SLLN) (the a.s. version) and, moreover, is ergodic.

17. Let {Xt} be a zero mean w.s.s. process with spectral density SX(ω). Suppose that SX(ω) = 0
if |ω| ≥ 2πB. Let T = 1

2B . Suppose we want to find the best linear mean squared estimate of
Xt given {XnT }Nn=−N in the form:

X̂t =
N∑
−N

h(t− nT )XnT

Find h(t− nT ).

This problem shows that the sampling theorem can be interpreted as a least squares represen-
tation on the space L2[(−∞,∞), IP).

18. Let R(t, s) given by the function in Problem 1 (a). Find the eigenvalues and eigenfunctions of
R(t, s).

Hint: Show that R(t) must satisfy:

d2R(t)
dt2

= −2δ(t)
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