
Best approximations and least-squares best-fitting polynomials

February 16, 2025

In engineering applications, we often encounter situations where we need to approximate data using a set
of basis functions or measurements. Whether in signal processing, control systems, circuit analysis, or
machine learning, engineers frequently model complex systems using a set of known vectors and seek the
best approximation to observed data.

For instance, in electrical and computer engineering, least squares arises in:

1. Signal reconstruction, where we approximate a signal using a subset of basis functions.

2. System identification, where we fit a mathematical model to input-output data.

3. Error correction, where we find the best estimate of transmitted data in noisy communication channels.

4. Linear regression, which is used in machine learning and data-driven modeling of physical systems.

When the given vectors do not span the space of possible solutions, often no exact solution exists. Instead,
we seek the best approximation—the linear combination that minimizes the error. The least squares method
provides a systematic approach to finding this best approximation, making it a fundamental tool in many
engineering disciplines.

In this section, we introduce least squares by examining a simple example where an exact solution does not
exist and show how to determine the closest possible approximation.

Given a collection of n m-dimensional vectors v1, . . . ,vn ∈ Rm, we seek to approximate a given m-
dimensional target vector y ∈ Rm as a linear combination of the given vectors. That is, we seek to find
scalars a1, . . . , an such that

a1v1 + · · ·+ anvn

comes as close to, or best approximates, y as much as possible. By “best approximates,” we will mean the
linear combination that is to y with respect to the 2-norm (also known as the Euclidean norm).

1

Example

For example, we may ask what linear combination of 2
1
0

 and

 1
1
1


This problem can be written as a linear system 2 1

1 1
0 1

(a1
a2

)
=

 1
−1
3

 .

To determine whether an exact solution exists, we form the augmented matrix and perform Gaussian
elimination (using partial pivoting): 2 1 1

1 1 −1
0 1 3

 ∼
 2 1 1

0 1 3
0 0 −3

 ,

and because the rank of the coefficient matrix (the first two columns) is two but the rank of the
augmented matrix is three, the system is inconsistent, so no exact solution exists.

One may never-the-less still ask: What linear combination of these two vectors is closest to the target?
Recall that the span of a collection of vectors is by definition all linear combinations, so we want to

find the vector in span


 2

1
0

 ,

 1
1
1

 that is closest to y.

Remember that 0.5

 2
1
0

 + 0.2

 1
1
1

 =

 1.2
0.7
0.2

 is equivalent to multiplying 2 1
1 1
0 1

(0.5
0.2

)
=

 1.2
0.7
0.2

. Thus, considering all linear combinations of these two vec-

tors a1

 2
1
0

 + a2

 1
1
1

 is equivalent to considering all products

 2 1
1 1
0 1

(a1
a2

)
for all

vectors a =

(
a1
a2

)
∈ R2.

Recall that the range of this matrix

 2 1
1 1
0 1

 is all products of this matrix by a vector in the domain

R2, so we are equivalently asking: What vector in the range of this matrix

 2 1
1 1
0 1

 is closest to

the target vector

 1
−1
3

.

To define closest, we mean what vector a minimizes the distance between

 2 1
1 1
0 1

a and

 1
−1
3

,

or, in other words, what vector a minimizes

∥∥∥∥∥∥
 2 1

1 1
0 1

a−

 1
−1
3

∥∥∥∥∥∥
2

?

If we define the matrix
V = (v1 · · ·vn),

asking which linear combination of the vectors v1, . . . ,vn is closest to an m-dimensional target vector y is
equivalent to asking: What vector a ∈ Rn brings V a closest to y, or what a minimizes ∥V a− y∥2?

2

Remark

The range of a 3× n matrix A, which consists of all possible linear combinations of its columns, can
take on different geometric forms depending on its rank:

1. Zero-dimensional (rank(A) = 0): If all entries of A are zero, its range consists only of the zero
vector 03.

2. One-dimensional (rank(A) = 1): If all columns of A are scalar multiples of each other, its range
is a line through the origin.

3. Two-dimensional (rank(A) = 2): If two of the columns of A form a basis for the span (that is, a
basis of the range), then the range is a plane through the origin. scalar multiples of each other,
its range is a line through the origin.

4. Three-dimensional (rank(A) = 3): If there are at least three linearly independent columns, the
range is all of R3.

Now, identify any line or plane in the room you are in and let that represent the range of a 3 × n
matrix. Next, choose any point off that line or plane. The closest point within the line or plane
to your chosen is the one where the difference vector between the chosen point and the range is
perpendicular to every possible direction within the range. In other words, the shortest distance is
achieved when the error vector is orthogonal to the subspace.
This insight forms the foundation of least squares approximation: when an exact solution does not
exist, the best approximate solution is the projection of the given point onto the subspace defined by
the range of the matrix.

To determine whether two vectors are perpendicular (or orthogonal), we check whether their dot product is
zero. This property is key to finding the best approximation in least squares problems. We seek a vector
a such that the difference between V a (the closest point in the range of V) and the target vector y is
perpendicular to the entire range of V . That is, the error vector

V a− y

must be orthogonal to every vector in the range of V .

Since every vector in the range of V can be expressed as V u for some u ∈ Rn, this condition translates into
the following equation:

(V a− y) · (V u) = 0

for every vector u in the domain Rn.

This expresses the fundamental ideal behind least squares: the error vector must be orthogonal to the
subspace spanned by the columns of V , ensuring that V a is the closest possible approximation to y.

Remark

This, however, does not yet help us to find a. However, you may have been taught the “transpose”
of a matrix. The purpose of the transpose is that if a matrix A : U → V , then A⊤ : V → U , and we
have the property that (Au) · v = u · (A⊤v) for all vectors u ∈ U and all vectors v ∈ V . Similarly,
if B : V → U , then B⊤ : U → V , and we have the property that u · (Bv) = (B⊤u) · v, also for all
vectors u ∈ U and all vectors v ∈ V .

We note that (V a−y) · (V u) is the dot product of a vector on the left and V u on the right, so we can move
the matrix multiplication to the left-hand side by using the transpose instead:

(V a− y) · (V u) = (V ⊤(V a− y)) · u = 0,

and this must be true for all vectors u ∈ Rn. The only vector that is perpendicular to all vectors in u ∈ Rn

is the zero vector 0n, and thus, the left-hand side of the dot product must be this zero vector. Therefore,

V ⊤(V a− y) = 0n.

Recall that one of the properties of a matrix is that it is linear, A(u1 +u2) = Au1 +Au2, so in this case, we
have:

V ⊤V a− V ⊤y = 0n.

Moving the one term to the right-hand side, we now have:

V ⊤V a = V ⊤y.

Notice that if V is m×n and that y is m-dimensional. Thus, V ⊤V is now n×n and V ⊤y is n-dimensional.
Thus, the matrix is square, so you may think that there are either no solutions, exactly one solution, or
infinitiely many solutions; however, in this case, because both the left- and right-hand sides are restricted
to the range of V ⊤, it follows that there is either one solution or infinitely many solutions: there can never
be no solutions. In other words, there is always one vector in the range that is “closest” to the given target
vector y.

3

Example

Returning to our example, we asked what linear combination of

 2
1
0

 and

 1
1
1

 best approximates

y =

 1
−1
3

?

We now define V =

 2 1
1 1
0 1

 and solve the system of linear equations defined by V ⊤V a = V ⊤y, or

the system described by the augmented matrix (V ⊤V |V ⊤y). Now, V ⊤V =

(
5 3
3 3

)
and V ⊤y =(

1
3

)
, and thus, we solve (

5 3 1
3 3 3

)
∼
(

5 3 1
0 1.2 2.4

)
,

which has the unique solution a =

(
−1
2

)
.

Consequently, the best approximation the target vector is

−

 2
1
0

+ 2

 1
1
1

 =

 0
1
2


and ∥∥∥∥∥∥

 0
1
2

−
 1
−1
3

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
 −12
−1

∥∥∥∥∥∥ =
√
6 ≈ 2.4495.

To observe that this is the best approximation, note that∥∥∥∥V (−1.12

)
− y

∥∥∥∥
2

=

∥∥∥∥V (−0.92

)
− y

∥∥∥∥
2

≈ 2.4597

and ∥∥∥∥V (−12.1
)
− y

∥∥∥∥
2

=

∥∥∥∥V (−11.9
)
− y

∥∥∥∥
2

≈ 2.4556,

all four of which are further away from the target y.
Important: These numbers are “nice” in order to demonstrate that this works. In reality, the
coefficients of the linear combination will not necessarily be so “nice.”

4

Example

As a second example, find the linear combination of
1
1
0
−2

 ,


−1
1
2
1

 ,


2
−1
−3
2


that best approximates the target vector

y =


−4
−1
6
3

 .

Let

V =


1 −1 2
1 1 −1
0 2 −3
−2 1 2


and then calculate V ⊤V a = V ⊤y or 6 −2 −3 −11

−2 7 −7 18
−3 −7 18 −19

 ∼
 6 −2 −3 −11

0 −8 16.5 −24.5
0 0 5.0625 −5.0625

 ,

so a =

 −21
−1

, and so the best linear combination of those three vectors that equals the given

target vector is

−2


1
1
0
−2

+


−1
1
2
1

−


2
−1
−3
2

 =


−5
0
5
3

 ≈ y =


−4
−1
6
3

 .

You will see that this is indeed close to the target vector on the right-hand side. Once again, this
example was specifically chosen to have the numbers work out “nicely” so that you can observe that
this does appear to be the best approximation.

5

Using least-squares to find best-fitting linear and quadratic poly-
nomials

Suppose we have m points (x1, y1), . . . , (xm, ym), and we’d like to find a linear polynomial that passes as
closely to these points. Thus, what we are asking is can we find coefficients a1 and a0 such that

a1x1 + a0 ≈ y1

a1x2 + a0 ≈ y2

a1x3 + a0 ≈ y3

...

a1xm + a0 ≈ ym

If we rewrite this as vectors, we arrive at
a1x1 + a0
a1x2 + a0
a1x3 + a0

...
a1xm + a0

 ≈


y1
y2
y3
...
ym

 .

Notice, we can split the left-hand vector into a linear combination: If we rewrite this as vectors, we arrive at

a1


x1

x2

x3

...
xm

+ a0


1
1
1
...
1

 ≈


y1
y2
y3
...
ym

 .

You will note, therefore, that we are asking what is the best approximation of the target vector

 y1
...
ym

 as

a linear combination of the vectors

 x1

...
xm

 and

 1
...
1

.

Similarly, if we are attempting to find the best quadratic polynomial that passes through these m points, we
are asking what linear combination of three vectors best approximates the target vector y:

a2x
2
1 + a1x1 + a0

a2x
2
2 + a1x2 + a0

a2x
2
3 + a1x3 + a0

...
a2x

2
m + a1xm + a0

 = a2


x2
1

x2
2

x2
3
...

x2
m

+ a1


x1

x2

x3

...
xm

+ a0


1
1
1
...
1

 ≈


y1
y2
y3
...
ym

 .

You will note, again, that we are asking what is the best approximation of the target vector

 y1
...
ym

 as a

linear combination of the three vectors

 x2
1
...

x2
m

,

 x1

...
xm

 and

 1
...
1

.

However, we already know how to find a best approximation, and so we define the two “tall” Vandermonde
matrices,

V1 =


x1 1
x2 1
x3 1
...

xm 1

 and V2 =


x2
1 x1 1

x2
2 x2 1

x2
3 x3 1
...

x2
m xm 1

 ,

where the index is the degree of the polynomial. Finding the least-squares best-fitting line is equivalent

to solving V ⊤
1 V1

(
a1
a0

)
= V ⊤

1 y, and finding the best-fitting quadratic polynomial is equivalent to solving

V ⊤
2 V2

 a2
a1
a0

 = V ⊤
2 y.

You will note that the coefficients correspond to the order of the columns of V1 and V2.

6

These products can be easily calculated:

V ⊤
1 V1 =

(∑m
k=1 x

2
k

∑m
k=1 xk∑m

k=1 xk m

)
, V ⊤

1 y =

(∑m
k=1 xkyk∑m
k=1 yk

)
and

V ⊤
2 V2 =

 ∑m
k=1 x

4
k

∑m
k=1 x

3
k

∑m
k=1 x

2
k∑m

k=1 x
3
k

∑m
k=1 x

2
k

∑m
k=1 xk∑m

k=1 x
2
k

∑m
k=1 xk m

 , V ⊤
2 y =

 ∑m
k=1 x

2
kyk∑m

k=1 xkyk∑m
k=1 yk

 .

Remark

These matrices have a very specific structural property where each the entries are constant along the
anti-diagonals (from top-right to bottom-left); for example,

a b c d
b c d e
c d e f
d e f g

 .

These matrices are called “Hankel” matrices.

7

https://en.wikipedia.org/wiki/Hankel_matrix

Example

Find the best-fitting least-squares linear and quadratic polynomial that passes through the points

(0.3, 3.2), (0.5, 3.1), (1.2, 3.5), (1.8, 6.0), (1.9, 5.7), (2.4, 4.4),

(2.7, 6.4), (4.0, 6.7), (6.1, 8.6), (7.2, 9.0), (8.1, 8.5), (8.5, 8.1).

First, we define the matrices

V1 =



0.3 1
0.5 1
1.2 1
1.8 1
1.9 1
2.4 1
2.7 1
4.0 1
6.1 1
7.2 1
8.1 1
8.5 1



, V2 =



0.09 0.3 1
0.25 0.5 1
1.44 1.2 1
3.24 1.8 1
3.61 1.9 1
5.76 2.4 1
7.29 2.7 1
16.00 4.0 1
37.21 6.1 1
51.84 7.2 1
65.61 8.1 1
72.25 8.5 1



.

We then calculate V ⊤
1 V1 =

(
264.59 44.7
44.7 12

)
and V1⊤y =

(
33.794
7.32

)
, which if we solve

V ⊤
1 V

(
a1
a0

)
= V ⊤

1 y to get that

(
a1
a0

)
≈
(

0.665460199321999
3.621160757525552

)
, and thus, the best-fitting

least-squares line passing through this data is shown here:

0 2 4 6 8 10

4

6

8

10

x

y

The least-squares best-fitting linear polynomial of this data

Alternatively, to find the least-squares best-fitting quadratic polynomial, we calculate V ⊤
2 V2 = 13964.6999 1857.873 264.59

1857.873 264.59 44.7
264.59 44.7 12

 and V2⊤y =

 2154.796
337.94
73.2

, which if we solve V ⊤
2 V

 a2
a1
a0

 =

V ⊤
2 y to get that

 a2
a1
a0

 ≈
 −0.1062554010760571.610419356536262

2.444030944461919

, and thus, the best-fitting least-squares

quadratic polynomial passing through this data is shown here:

0 2 4 6 8 10
2

4

6

8

x

y

The least-squares best-fitting quadratic polynomial of this data

8

Now, what actually is being minimized? For each yk, it is being approximated by either a1xk + a0 or
a2x

2
k + a1xk + a0, respectively. Thus, as the 2-norm is the square root of the sum of the squares of the

entries, we have that we are minimizing:√√√√ m∑
k=1

((a1xk + a2)− yk)2 or

√√√√ m∑
k=1

((a2x2
k + a1xk + a2)− yk)2,

again, respectively.

Example

In the previous example, the values being minimized are the sums of the squares of the differences
between the actual yk values and the corresponding point on the least-squares best-fitting polynomial.
These errors being squared are highlighted in these two graphs.

0 2 4 6 8 10

4

6

8

10

x

y

The errors of the best-fitting linear polynomial

0 2 4 6 8
2

4

6

8

x

y

The errors of the best-fitting quadratic polynomial

9

Remark

Engineers often avoid using the 2-norm because it measures only the overall deviation of the entire
vector, whereas they are typically more interested in the error per entry. Instead, they frequently use
the root-mean-squared error (rmse), which can be viewed as the root of the average squared error,
in contrast to the 2-norm’s root of the total squared error. To compute the rmse, one first sums the
squares of the error, but then divides by the number of entries to find the average, and only then
takes the square root.
Concretely, if V is the corresponding Vandermonde matrix for a linear polynomial and a is the vector
of coefficients, then

∥V a− y∥2 =

√√√√ m∑
k=1

((a1xk + a0)− yk)2,

while the corresponding rmse is

rmse =

√√√√ 1

n

m∑
k=1

((a1xk + a0)− yk)2.

This relationship can also be expressed succinctly as

rmse =

√
1

n
∥V a− y∥22 =

1√
n
∥V a− y∥2.

Remark

Given these points (x1, y1), . . . , (xm, ym), in addition to finding the least-squares best-fitting linear and
quadratic polynomials, you may ask: What is the best-fitting constant function a0 passing through
these points?
In this case, the tall Vandermonde matrix consists of only a single column: an m × 1 matrix of all
ones:

V0 =


1
1
...
1

 .

When you now solve V ⊤
0 V0(a0) = V ⊤

0 y, this simplifies to

(m)(a0) =

(
m∑

k=1

yk

)
,

and solving this, we get that

a0 =
1

m

m∑
k=0

yk,

which may actually be what you would expect: the least-squares best-fitting constant function passing
through m points is that constant function equal to the average of the y-values.
Note, the equation looks a little awkward, because we have a 1×1 matrix multiplied by a 1-dimensional
vector equated to a 1-dimensional vector, but that is the same result you would get if you asked: What
is the scalar multiple of a given vector v that best approximates a given vector u? You also saw this
in your first-year linear algebra course: it is, of course, the projection: projv(u) =

v·u
v·vv, so if we let

v = 1m (an m-dimensional vector of all ones), then

proj1m
(u) =

1m · u
1m · 1m

1m

=

∑m
k=1 uk

m
1m

=

(
1

m

m∑
k=1

uk

)
1m,

That is, the best approximation of u by a scalar multiple of 1m is that constant vector with all entries
equal to the average of the entries in u.

10

Remark

Beyond the scope of this course, this technique is not restricted to simply finding least-squares best-
fitting polynomials. You can also find least-squares best-fitting linear combinations of any set of
functions. For example, consider the following data:

(0.0,−0.2), (0.1, 1.5), (1.2, 5.2), (1.4, 7.0), (1.8, 9.9), (2.1, 11.1), (2.5, 10.0), (3.2, 8.6), (3.2, 10.0), (3.7, 7.2),
(3.9, 7.5), (4.5, 2.7), (6.6, 2.3), (6.8, 3.0), (7.2, 3.8), (7.2, 3.7), (7.4, 4.6), (7.8, 6.4), (7.8, 7.4), (7.9, 8.1).

These data points are shown here:

0 2 4 6 8

0

2

4

6

8

10

12

x

y
Sinusoidal data points

If you were aware that this was coming from a system that was sinusoidal with a period of 2π and offset
by a constant, then you may ask: What is the best fitting curve of the form y = a sin(x)+ b cos(x)+ c
that fits this data? Like above, we are asking what coefficients approximate the y-values as closely
as possible, so a sin(xk) + b cos(xk) + c ≈ yk. We create the corresponding matrix

V =


sin(x1) cos(x1) 1
sin(x2) cos(x2) 1
sin(x3) cos(x3) 1

...
...

...
sin(xm) cos(xm) 1

 ,

and again solve V ⊤V a = V ⊤y. Thus, we have

V =



0 1 1
0.100 0.995 1
0.932 0.362 1
0.985 0.170 1
...

...
...

0.999 −0.046 1


, V ⊤V =

 11.018 2.886 8.429
2.886 8.982 0.750
8.429 0.750 20

 , and V ⊤y =

 58.561
−30.441
119.8

 .

Solving V ⊤V a = V ⊤y, we have

 2.690
−4.674
5.031

, so the least-squares best-fitting linear combination is

2.690 sin(x)− 4.674 cos(x) + 5.031, shown here:

0 2 4 6 8

0

2

4

6

8

10

12

x

y

Sinusoidal data points

11

Formulas for the least-squares best-fitting polynomials

When you are asked to program least-squares best-fitting polynomials in a computer, you are simply given a
formula. We will show that those formulas come from solving the systems of two and three linear equations
above, starting with (∑m

k=1 x
2
k

∑m
k=1 xk

∑m
k=1 xkyk∑m

k=1 xk m
∑m

k=1 yk

)
This, however, looks too confusing, so we will rewrite this by substituting:

• Sx =
∑m

k=1 xk, the sum of the xs.

• Sx2 =
∑m

k=1 x
2
k, the sum of the xs squared.

• Sy =
∑m

k=1 yk, the sum of the ys.

• Sxy =
∑m

k=1 xkyk, the sum of the products of the xs and ys.

Thus, we have: (
Sx2 Sx Sxy

Sx m Sy

)
Add −Sx

m times Row 2 onto Row 1, we get:(
Sx2 − 1

mS2
x 0 Sxy − 1

mSxSy

Sx m Sy

)
It may not be obvious, but this is equivalent to a row-echelon form, so we may solve:

a1 =
Sxy − 1

mSxSy

Sx2 − 1
mS2

x

,

and multiplying this by 1 = m
m , we have

a1 =
mSxy − SxSy

mSx2 − S2
x

.

Having found this, the second equation says that:

a1Sx +ma0 = Sy,

so solving this for a0, we get

a0 =
1

m
(Sy − a1Sx).

It is a little more tedious to do Gaussian elimination on the 3 × 3 system for least-squares best-fitting
quadratic polynomials, but adding appropriate multiples of Row 3 onto Rows 2 and 1, as above, and then
adding an appropriate multiple of Row 2 onto Row 1, we get that Sx4 Sx3 Sx2 Sx2y

Sx3 Sx2 Sx Sxy

Sx2 Sx m Sy

 ∼


−S2
xSx4 + 2SxSx2Sx3

−S3
x2 + Sx2Sx4m− S2

x3m
0 0

−S2
xSx2y + SxSx2Sxy + SxSx3Sy

−S2
x2Sy + Sx2Sx2ym− Sx3Sxym

Sx3m− SxSx2 Sx2m− S2
x 0 Sxym− SxSy

Sx2 Sx m Sy

 .

From this, we may deduce that:

a2 =
S2
xSx2y − SxSx2Sxy − SxSx3Sy + S2

x2Sy − Sx2Sx2ym+ Sx3Sxym

S2
xSx4 − 2SxSx2Sx3 + S3

x2 − Sx2Sx4m+ S2
x3m

,

and hence

a1 =
Sxym− SxSy − a2(Sx3m− SxSx2)

Sx2m− S2
x

, and

a0 =
1

m
(Sy − a2Sx2 − a1Sx).

12

Savitzky-Golay filters

The formulas in the previous section must be recomputed for every new set of points, and for large values
of x, the corresponding condition number of the matrix will be large, so this will magnify even small errors,
including errors from simple floating-point computations.

To avoid this, a common design is to consider only equally spaced x-values, where the period between samples
is h, so tn = t0 + nh. Thus

. . . , (tn−3, yn−3), (tn−2, yn−2), (tn−1, yn−1), (tn, yn)

are mapped to the non-positive integers

. . . , (−3, yn−3), (−2, yn−2), (−1, yn−1), (0, yn)

This is performed by the simple linear mapping s← t−tn
h . Consequently, tn + δh is mapped onto the shifted

and scaled value s = δ.

Now, we need only find the solution when the Vandermonde matrix for N + 1 points is either

V1 =



0 1
−1 1
−2 1
−3 1
...

...
−N 1


or V2 =



0 0 1
1 −1 1
4 −2 1
9 −3 1
...

...
N2 −N 1


.

Now, as the condition numbers of these matrices is relatively small, and as they are integer matrices, is

it actually quite straight-forward to calculate
(
V ⊤
m Vm

)−1
V ⊤ directly, and thus, one can quickly find the

coefficients of the least-squares best-fitting polynomial. For example, if N = 7, we have

(
V ⊤
1 V1

)−1
V ⊤ =

1

336

(
28 20 12 4 −4 −12 −20 −28
140 112 84 56 28 0 −28 −56

)
and

(
V ⊤
2 V2

)−1
V ⊤ =

1

56448

 2352 336 −1008 −1680 −1680 −1008 336 2352
21168 5712 −5040 −11088 −12432 −9072 −1008 11760
39984 21168 7056 −2352 −7056 −7056 −2352 7056


This means that the coefficients can be found in O(mN) time where m is the degree of the polynomial being
fitted.

Once we have that least-squares best-fitting linear or quadratic polynomial a1s+ a0 or a2s
2 + a1s+ a0, we

can:

1. Approximate the signal y(t) at time tn + δh by calculating a1δ + a0 or (a2δ + a1)δ + a0.

2. Approximate the derivative of the signal y(t) at time tn + δh by calculating a1

h or 2a2δ+a1

h2 .

3. Approximate the second derivative of the signal y(t) at time tn+δh by calculating 2a2

h2 for the quadratic
polynomial.

4. Approximate the integral
∫ tn
tn−1

y(τ)dτ with h
(
a0 − a1

2

)
and h

(
a0 − a1

2 + a2

3

)
.

5. Approximate the integral
∫ tn+1

tn
y(τ)dτ with h

(
a0 +

a1

2

)
and h

(
a0 +

a1

2 + a2

3

)
.

13

