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5.3b When h is 0, there is only a single node, and 2° =2* -1 =1.
Assume that in general, a complete binary tree of height h has between 2" and 2"** — 1 nodes.
There are two cases for complete binary trees of height h + 1:

1. The left sub-tree has between 2" and 2"* — 1 nodes and the right sub-tree has 2" — 1 nodes, or
2. The left sub-tree has 2"** — 1 nodes and the right sub-tree has between 2" and 2"** — 1 nodes.

Taking into account the root node,
the first case has between 1 + 2"+ 2" —1=2"*1and 1+ 2"** — 1+ 2" 1 =3.2" 1 nodes, and
the second case has between 1 +2"*1 — 1 +2"=3.2"nodesand 1 + 2"*1 —1 + 2"*1 1 =2"*2 _ 1 nodes.
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Thus, the number of nodes runs between and 2"*2 -1, which is the expected result.
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5.3f The actual tree is
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42 is at index 4, so its parent is at index 4/2 = 2 and its childrenareat 2-4 =8and 2.4 +1=9

54 is at index 5, so its parent is at index 5/2 = 2 and its children are at indices 2-5=10and 2.5+ 1 =11,
but the size of the tree is 10, so it has only one child.
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5.3g Some implementations are:

template <typename Type, int N>
Type Complete_binary_tree::parent( Type const &obj ) {
int n = find( obj );

if (n==0) {
throw illegal_argument();
}

if (n==1){
throw underflow();

}

return array[n/2];

}

template <typename Type, int N>
Type Complete_binary_tree::parent( Type const &obj ) {
int n = find( obj );

if (n==90) {
throw illegal argument();
}

if ( 2*n + 1 > complete_size ) {
throw underflow();

}

return array[2*n + 1];
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