© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

5.3b When h is 0, there is only a single node, and 2° =2* -1 =1.
Assume that in general, a complete binary tree of height h has between 2" and 2"** — 1 nodes.
There are two cases for complete binary trees of height h + 1:

1. The left sub-tree has between 2" and 2"* — 1 nodes and the right sub-tree has 2" — 1 nodes, or
2. The left sub-tree has 2"** — 1 nodes and the right sub-tree has between 2" and 2"** — 1 nodes.

Taking into account the root node,
the first case has between 1 + 2"+ 2" —1=2"*1and 1+ 2"** — 1+ 2" 1 =3.2" 1 nodes, and
the second case has between 1 +2"*1 — 1 +2"=3.2"nodesand 1 + 2"*1 —1 + 2"*1 1 =2"*2 _ 1 nodes.

2h+l

Thus, the number of nodes runs between and 2"*2 -1, which is the expected result.

sy

5.3f The actual tree is

/N

TN y > "/ \
31 (25 (14
— — _

SN

A T A\ s
42 54) 73 6

42 is at index 4, so its parent is at index 4/2 = 2 and its childrenareat 2-4 =8and 2.4 +1=9

54 is at index 5, so its parent is at index 5/2 = 2 and its children are at indices 2-5=10and 2.5+ 1 =11,
but the size of the tree is 10, so it has only one child.

Page 1 of 2

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

5.3g Some implementations are:

template <typename Type, int N>
Type Complete_binary_tree::parent(Type const &obj) {
int n = find(obj);

if (n==0) {
throw illegal_argument();
}

if (n==1){
throw underflow();

}

return array[n/2];

}

template <typename Type, int N>
Type Complete_binary_tree::parent(Type const &obj) {
int n = find(obj);

if (n==90) {
throw illegal argument();
}

if (2*n + 1 > complete_size) {
throw underflow();

}

return array[2*n + 1];

Page 2 of 2

