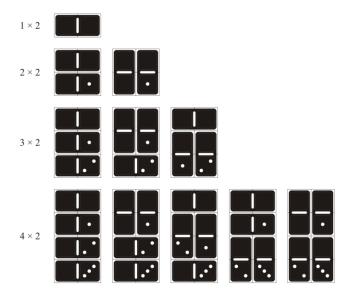
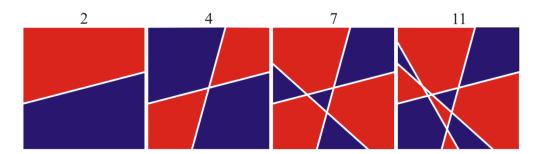
- **1.4a** Prove by induction that the sum of the first n even numbers is $n^2 + n$.
- **1.4b** Prove by induction that the sum of the first *n* numbers of the form 1, 4, 7, 10, ... is $\frac{n}{2}(3n-1)$.
- **1.4c** Prove by induction that $2\sum_{k=0}^{n} 3^{k} = 3^{n+1} 1$.
- **1.4d** Prove by induction that $\sum_{k=0}^{n} (-1)^{k} {n \choose k} = 0.$
- **1.4e** Prove by induction that $\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$.
- **1.4f** Prove by induction that $\sum_{k=0}^{n} (-1)^k r^k = \frac{1 (-r)^{n+1}}{1 + r}$.
- **1.4g** Prove that $n^2 n$ is even for all integers n.
- **1.4h** Show that $\sum_{k=0}^{n} k^2 \ge \frac{n^3}{3}$ for all $n \ge 0$.
- **1.4***i* Show that $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ for all $n \ge 0$.
- **1.4***j* Show that $\sum_{k=1}^{n} 3k^2 3k + 1 = n^3$ for all $n \ge 1$.
- **1.4k** Show that $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \ge \sqrt{n}$ for all $n \ge 1$.
- **1.4** Show that 4 divides $3^{2n-1} + 1$ for all $n \ge 1$.
- **1.4m** Show that $\left|\sum_{k=1}^n x_k\right| \le \sum_{k=1}^n |x_k|$ for all $n \ge 1$.
- **1.4***n* Show that $2^{n-1} \le n!$ for all $n \ge 1$.
- **1.40** Show that 133 divides $11^{n+1} + 12^{2n+1}$ for all $n \ge 0$.
- **1.4p** If F(n) is the n^{th} Fibonacci number where F(0) = F(1) = 1, show that F(n) and F(n+1) are relatively prime (that is, they share no common factors) for all $n \ge 0$.
- **1.4***q* Show that every third Fibonacci number is even.
- **1.4r** Show that $x^n y^n$ is divisible by x y for all $n \ge 0$.

- **1.4s** Can you use a proof by induction to prove that $n^2 \ge 3n 2$ for all n?
- **1.4** Can you use a proof by induction to prove that $n^2 \ge 7n 11$ for all n?
- **1.4u** Come up with a formula that gives d_n , the number of unique ways in which dominos can be used to tile an $n \times 2$ grid and then demonstrate that your formula is correct using induction. The image shows that $d_1 = 1$, $d_2 = 2$, $d_3 = 3$ and $d_4 = 5$.



1.4v A set of *n* lines can be used to divide a plane into a maximum of $\frac{n^2 + n + 2}{2}$ regions, as is shown in the image. Come up with a recursive formula and show your formula is correct using induction.



1.4w Using induction, demonstrate that any $2^n \times 2^n$ grid with one square deleted can be tiled with triominos, as is shown for n = 0, 1 and 2 and suggested for n = 3 in the following image.

