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Phasors
Outline

* In this topic, we will look at

The necessary background

Sums of sinusoidal functions

The trigonometry involved

Phasor representation of sinusoids
Phasor addition

Why phasors work

Phasor multiplication and inverses
Phasors for circuits



Phasors
Background

« Consider any periodic sinusoid with
— Period T = 1 = 27w
— Frequency f = 1UT = w2z
— Angular frequency w = 22t = 24T

 Itis possible to write such a sinusoid as
Vv cos(at + o)

where
— Vvis the amplitude

_ pis the phase shif 7\ ] /\ A A /\
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Phasors
Background

« Asvcos(at + ¢+ 27) =vcos(at + @), restrict —z< ¢g<rx

« Engineers throw an interesting twist into this formulation
— The frequency term ot has units of radians
— The phase shift ¢ has units of degrees: —180° < ¢ < 180°

« For example,
V cos(377t + 45°)
V cos(377t —90°)



Phasors
Background

* A positive phase shift causes the function to lead of ¢
« For example, —sin(t) = cos(t + 90°) leads cos(t) by 90°

Blue peaks first
- Compare cos(377t) and cos(377t + 45) /- Blueis leading
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Phasors
Background

« A negative phase shift causes the function to lag by ¢
* For example, sin(t) = cos(t — 90°) lags cos(t) by 90°

Red peaks first

» Compare cos(377t) and cos(377t — 90°) - Blue lags behind
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Phasors
Background

« If the phase shift is 180, the functions are out of phase
« E.g., —cos(t) = cos(t — 180°) and cos(t) are out of phase

» Compare cos(377t) and cos(377t — 180")
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Phasors
Background

« Suppose we add a number of sinusoidal voltages with:
— Equal frequencies
— Different amplitudes (voltages) and phase shifts

+ E.g.,3c0s(377t+75°)+10c0s(377t +50°)+ 4 cos(377t —15°)+
500s(377t +42°)+12c0s(377t —90°)

It may not be obvious, but the result will be another
sinusoid of the form

Acos(377t + ¢)



Phasors
Background

* These are the five sinusoids and their sum




Phasors

Derivations (The Hard Way)

« We will now show that the sum of two sinusoids with
— The same frequency, and
— Possibly different amplitudes and phase shifts

IS a sinusoid with the same frequency

« Qur derivation will use trigonometric formula familiar to
all high-school students

— Later, we will see how exponentials with complex powers
simplify this observation!



Phasors

Example Derivation (The Hard Way)

 Consider the sum of two sinusoids:

3cos(at)+9+/2 cos(a)t + 45°)
« Use the rule

cos(a+b)=cosacosb—sinasinb

« Thus we expand the terms
94/2 cos(et + =) = 9v/2 cos(wt ) cos(45° )— 9v/2 sin(at )sin(45° )
= 9cos(wt)-9sin(at)



Phasors

Example Derivation (The Hard Way)

* Therefore
3005(cot )+ 9+/2 cos(at +45° ) =12 cos(awt ) —9sin(awt)
* We wish to write this as
v cos(at + @) = vcos(at )cos ¢ —vsin(at)sin ¢
* We therefore deduce that
VCcosg =12

vsing =9



Phasors

Example Derivation (The Hard Way)

* Given
VCoS ¢ =12

vsing =9
e Square both sides and add:
(vcosg) +(vsing) =12% +9°
vz(cos2 @ +sin’ ¢)= 225

. Because €0s° ¢ +sin” ¢ =1 it follows that

V=4/225=15



Phasors

Example Derivation (The Hard Way)

« Again, given
VCoS ¢ =12

vsing =9
 Take the ratio:
vsin ¢ 9

=tang=—=0.75
V COS ¢ 12

* Therefore ¢ = 36.87



Phasors

Example Derivation (The Hard Way)

* It follows that
3c05(cot )+9+/2 cos(at +45° ) =15cos(wt + 36.87°)

« This is independent of the frequency:
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Phasors

Full Derivation (The Hard Way)

Consider the sum of two sinusoids:
v, cos(ct + ¢, )+ v, cos(at + ¢, )
Using the rule

cos(a+b)=cosacosb—sinasinb

we can expand
v, €os( @t + ¢, ) +V, cos(awt + ,)

=V, cos(mt)cos(¢, ) -V, sin(wt)sin(g, )+
v, cos (et )cos (¢, )—Vv, sin(wt)sin(g,)
= cos(cot)(v1 cos( ¢, ) +V, cos (o, )) -
sin (ot ) (v, sin (¢, ) +V,sin(¢,))



Phasors

Full Derivation (The Hard Way)

* Now, given

v, cos(at + ¢, )+ Vv, cos(at + ¢,

at+g
— cos(a)t@¢l)+vz @—sin(aﬁ v, sin(g, )+, @

Suppose we can write this in the form

vcos(a)t+
» First, vcos(at =@:os
and thus cos )+V, cos(g,
S|n(¢l)+v sin(g,




Phasors

Full Derivation (The Hard Way)

* First, given

veos(¢) = vy cos(¢y )+ v, cos(g,)
vsin(@) = vy sin(¢; ) + v, sin(4; )

square both sides and add

vZ = v, +2v,V, (COS ¢, COS ¢, +Sin ¢y Sin ¢, )+ V,,°

SV = \/v12 +2V,V, (COS ¢, COS @b, +Sin ¢y SiN by )+ V,,°



Phasors

Full Derivation (The Hard Way)

« Similarly, given

vcos(#) = v cos(¢h ) + v, cos(4; )

vsin(g) = v, sin(g, )+ v, sin(g, )
take the ratio
sin ¢ _ Vv, SIng, +V, Sin g,

tan g =
CoS¢ V,COS¢ +V, COS ¢,

R

V; COS @, +V, COS @,



Phasors

Full Derivation (The Hard Way)

« Adding n sinusoids must be done one pair at a time:

v, cos(at + ¢, )+ v, cos(at + @, )+ Vv, cos(at + @, )+ - -

A4

v, cos(at +4, ) +V, CoS(at +¢, )+

J/

h'd

V1,2,3 COS(a)t T ¢1,2,3) + -



Phasors
Using Phasors

« Rather than dealing with trigonometric identities, there is
a more useful representation: phasors

« Assuming o Is fixed, associate
veos(at + @) <> VL

where vZ¢ is the complex number
with magnitude v and argument ¢

« The value v£¢ is a phasor and
IS read as
“vee phase fee” 1




Phasors
Using Phasors

« The addition of sinusoids is equivalent to phasor addition

Function of Time Phasors
n n
>, cos(at +¢,) - D Vi L4,
k=L k=1
complex number
trigonometry addition
veos(at +¢) - V¢

« We transform the problem of trigonometric addition
Into a simpler problem of complex addition



Phasors
Using Phasors

* Recalling Euler’s identity
vZ¢=vel? =v(cos¢+ jsing)

* Therefore

n n n
k=1 k=1 k=1



Phasors
Using Phasors

- Given our motivating example 3cos(«t)+9+/2 cos(«t +45°)
— Using phasors: 3/20° + 02,45 =3+9+ 9]

=12+9]

=15/36.87"

_ The result is 15c0s(at +36.87°)

105 + 107




Phasors
Using Phasors

* For example, given our first sum:
3¢0s(377t +75°)+10c0s(377t +50°)+ 4 cos(377t —15°)+

5¢0s(377t +42°)+12cos(377t —90°)

« Using phasors
375 +10./50° +4£(-15 )+ 5.242° +12.£(-90°)

=3e™ 1 +10e°% ) + 41 4 5% 1 £ 30790
~14.78+0.87 ]
=14.81/3.36°

we get the sum14.81cos(377t +3.36)



Phasors
Using Phasors

* These graphs show:
— The individual phasors
— The sum of the phasors

10; { 10/

5§
370 14.81.73.36° ¢
—/__’(4_’_1.:
10 15 5 10 15
-5 -5

12.2-90°

-107 -10/




Phasors
Using Phasors

* A plot of the sum
3¢0s(377t +75°)+10¢0s(377t +50°)+ 4 cos(377t —15°) +

5003 377t+42° +12 cos 377t 90O

IS identical to a plot of 14.81cos 377t + 3. 36




Phasors

Why Phasors Work

To understand recall that
vel*?) =y cos(at + ¢)+ jvsin(at + @)
Therefore vcos(at +¢)=R(ve' ™)
Plot the complex exponential
14.81e j(377t+3.36°)
The real part: o
14.81 cos(377t +3.36°)
The imaginary part: "
14.81sin(377t + 3.36")




Phasors

Why Phasors Work

* Note that

Vlej(a)t+¢.l.) _|_V2ej(wt+¢2) :Vlelwtejél_ _I_Vzeja)tej¢2

= (W ZLd+v, 26, 01"
and because R{w+ z} = R{iw}+R{z}, it follows

v, coS(at + ¢, )+V, cos(at + ¢, ) = Riv,e ) b Ry el x|
m{ 1ela)tej¢1 }_I_ m{ eja)tej¢2}
Riveel +v,eiel |
"2+, 24, )0



Phasors

Derivation (The Easy Way)

* Previously, we used trigonometry to show that the sum
of two sinusoids with the same frequency must continue

to have the same frequency
« Using complex exponentials, this becomes obvious

iR{Vlej@m}-l- SR{VZGJ@@)}: 93{(\,14% +VZZ¢2)E@}



Phasors
Phasor Multiplication

« Multiplication may be performed directly on phasors:
— The product of two phasors I,.£@, and I,Z¢, is the phasor

(rr,) (4 +4,)

— For example,

(5245°)-(2£-60")=10£-15

— This generalizes to products of n phasors:

(ngd)--(r£g,)=(r--r)d+-+4)



Phasors
Phasor Multiplication

« Calculating the inverse is also straight-forward:
— The inverse of the phasor rZ¢ is the phasor

— For example,
5245° )" =022 - 45

— Using multiplication, we note the product is 1.

(r2 ) (HA(— ¢)j - (r %jz(qﬁ +(-¢))=120

r



Phasors
Linear Circuit Elements

* When dealing with alternating currents (AC):

Impedance Z =R +jX

— The generalization of the resistance R is
the complex impedance Z =R + jX
— The generalization of the conductance G is .
the complex admittance Y = G + |B
 Ohm’s law easily generalizes:
V=1/ Admittance ¥ = G + B

Susceptance jB

Inductive



Phasors
Linear Circuit Elements

« With AC, the linear circuit elements behave like phasors

Impedance Z =R +jX

Inductor with inductance L Z=JoL=wlL/90"  cuen

Inductive

Resistor with resistance R 7 =RAO’ ’R

: . : 1 1 .
Capacitor with capacitance C Z = — = £ — Q) p—_—ics
Ja)C Admittance Y = G + B
— Note that inductance and capacitance 4 | 1

are frequency dependant

* We can use this to determine the voltage |
across an linear circuit with AC: V=12 | -




Phasors
Linear Circuit Elements

 Consider three circuit elements in series:

R L C
—\f—

Impedance Z =R +jX

with
R= 20
L - 50 mH Admittance Y = G + /B
C =750 mF oo
* The total impedance is:
7 =20 +@0.050£90" + —~— /90
- E.g., if =1, it follows that 0730 - J

/ =2316£-32.69



Phasors
Linear Circuit Elements

If the current across this circuit is | = 10 cos(t) A,

Impedance Z =R +jX

R L C
—\f—

we may compute the voltage:

V =1z
=(10£0")x(2.376.£-32.69') Admittance ¥ = G + /B
2376/ -32.69

or V = 23.76 cos(t — 32.69°) V ‘

| Inductive I



Phasors
Linear Circuit Elements

If the current across this circuit is | = 10 cos(377t) A,

Impedance Z =R +jX

R L C
we need to recalculate the impedance: + R
Z =2/0"+377-0.050.£90° + —%_ /—90°
= 1895483940 Admittance Y=4G +jB
Now V =17 ‘ .
=(10£0")x(18.95..83.94°) EE —
—189.5./83.94 L

or V =189.5 cos(377t + 83.94") V



Phasors
Linear Circuit Elements

« Consider three circuit elements in parallel with

R= 2Q R W
L — 50 mH L Inductive
C =750 mF s bl A‘L_ —
* The total admittance is: Ch
| | Conductive
1 1 1 1
= — = + —+ - Admittance Y = G +jB
Z 2/0° ®0.050,90° 4%

 E.qg., If =1, it follows that
Y =0.5£0"+20£-90" +0.75290°
=18.95/-83.94
-2 =0.05276,83.94°

Impedance Z =R +jX

Conductive

L




Phasors
Linear Circuit Elements

If the current across this circuit is | = 10 cos(t) A

Impedance Z =R +jX

R A ceacince 1
L
—_— Y Y\
()
|l
we may compute the voltage:
vV = |7
-
=(10£0")x(0.05276.£83.94" ) N
=0.5276£83.94 nducil
-

or V =0.5276 cos(t + 83.94") V




Phasors
Linear Circuit Elements

 If the current across this circuit is | = 10 cos(377t) A

Impedance Z =R +jX

W
L
—_——Y Y\
Cy
|l
we need to recalculate the impedance: Adritance 1 - G+ j
1 1 1 1 -
— — = _|_ _|_ Conductive
Z 2/0° 377-0.050£90° 5k £ —90°
— 2827489900 L lnducy

or Z =0.003537£—-89.90°



Phasors
Linear Circuit Elements

« Thus, with the current |1 =10 cos(377t) A and
impedance Z = 0.0035374—89.9013\/\/\_
we may now calculate L

4’-@% Resistance X

| |
=(1040°)x(o.0035374—89.900) l
—0.03537.2 —89.90°
or V =0.03537 cos(377t — 89.90") V

Impedance Z =R +jX

Reactance jX

Admittance Y = G + B

Susceptance jB

« This should be intuitive, as the capacitor

acts as essentially a short-circuit for high &= -

frequency AC



Phasors
Linear Circuit Elements

« A consequence of what we have seen here is that any
linear circuit with alternating current eeseneer
may be replaced with
— A single resistor, and

— A single complex impedance
« A capacitor or an inductor

onductive
R ‘ Admittance Y = G + B
L Susceptance jB
‘{ \I M C Conductive N

R L | R __R\N\ B e




Phasors
Final Observations

* These techniques do not work if the frequencies differ

« The choice of 377 in the examples is deliberate:
— North American power is supplied at 60 Hz:

27160~=376.99111843
— Relative error: 0.0023%
— European power is supplied at 50 Hz:

27750 =100z~ 314.159265358



Phasors
Final Observations

« Mathematicians may note the peculiar mix of radians
and degrees in the formula

10cos(377t +50°)

Justification:
— The phase shifts are 180° or less (x radians or less)
— Which shifts are easier to visualize?

120° 2.094 rad or 243 rad
60° 1.047 rad or /3 rad
45° 0.785 rad or /4 rad
30° 0.524 rad or 76 rad

— Is it obvious that 2.094 rad and 0.524 rad are orthogonal?

— Three-phase power requires the third roots of unity:
« These cannot be written easily with radians (even using 7)



Phasors
Summary

* In this topic, we will look at

Sum of sinusoidal functions
The trigonometry is exceptionally tedious
The phasor representation VCOS(a)t + ¢) VLY

The parallel between phasor addition and trigonometric
summations

Phasor multiplication and inverses
Use of phasors with linear circuit elements
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