

Topics in Electrical and Computer Engineering

Phasors

Douglas Wilhelm Harder
Department of Electrical and Computer Engineering
University of Waterloo

Copyright © 2008-10 by Douglas Wilhelm Harder. All rights reserved.

Phasors Outline

- In this topic, we will look at
 - The necessary background
 - Sums of sinusoidal functions
 - The trigonometry involved
 - Phasor representation of sinusoids
 - Phasor addition
 - Why phasors work
 - Phasor multiplication and inverses
 - Phasors for circuits

Consider any periodic sinusoid with

- Period
$$T = 1/f = 2\pi/\omega$$

- Frequency
$$f = 1/T = \omega/2\pi$$

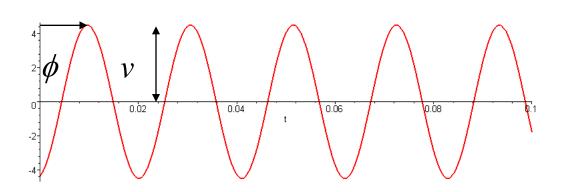
- Angular frequency
$$\omega = 2\pi f = 2\pi/T$$

It is possible to write such a sinusoid as

$$v\cos(\omega t + \phi)$$

where

- v is the amplitude
- ϕ is the *phase shift*

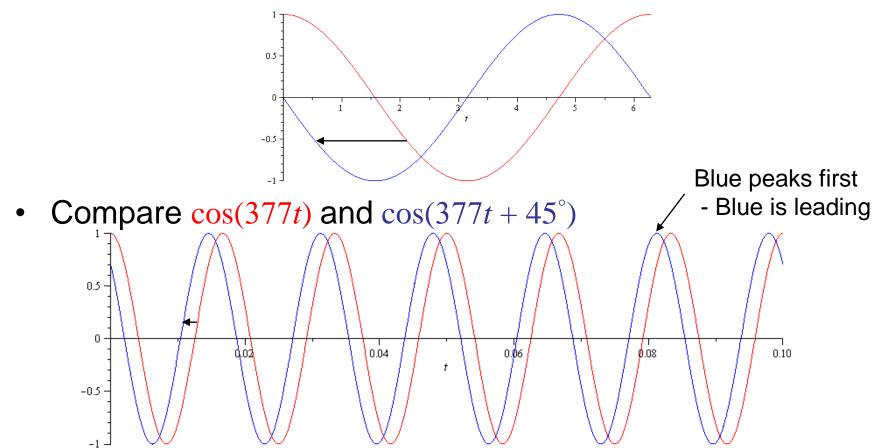


- As $v \cos(\omega t + \phi + 2\pi) = v \cos(\omega t + \phi)$, restrict $-\pi < \phi \le \pi$
- Engineers throw an interesting twist into this formulation
 - The frequency term ot has units of radians
 - The phase shift ϕ has units of degrees: $-180^{\circ} < \phi \le 180^{\circ}$
- For example,

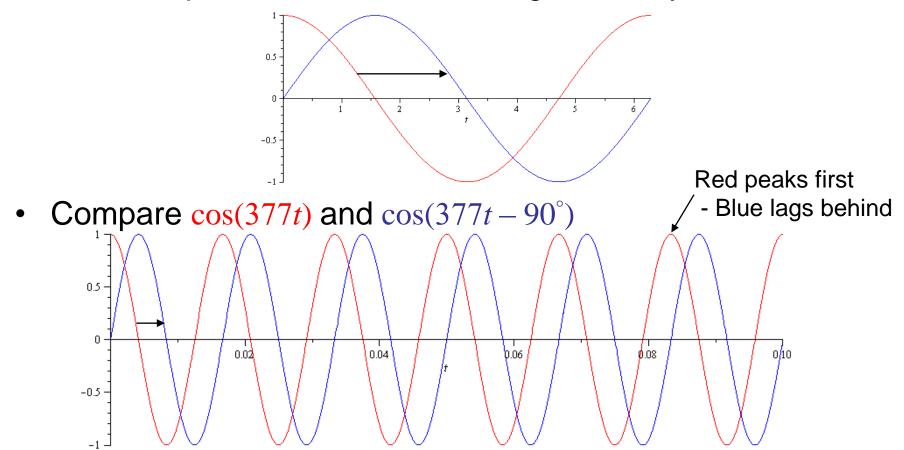
$$V\cos(377t + 45^{\circ})$$

$$V\cos(377t - 90^{\circ})$$

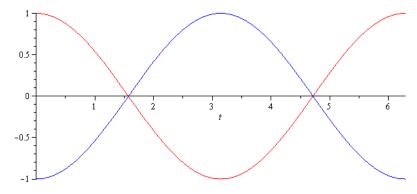
- A positive phase shift causes the function to *lead* of ϕ
- For example, $-\sin(t) = \cos(t + 90^\circ)$ leads $\cos(t)$ by 90°



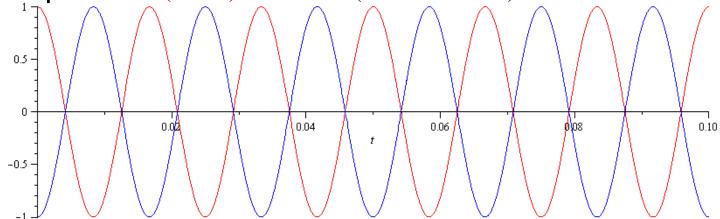
- A negative phase shift causes the function to lag by ϕ
- For example, $sin(t) = cos(t 90^\circ)$ lags cos(t) by 90°



- If the phase shift is 180° , the functions are *out of phase*
- E.g., $-\cos(t) = \cos(t 180^{\circ})$ and $\cos(t)$ are out of phase



• Compare $\cos(377t)$ and $\cos(377t - 180^{\circ})$



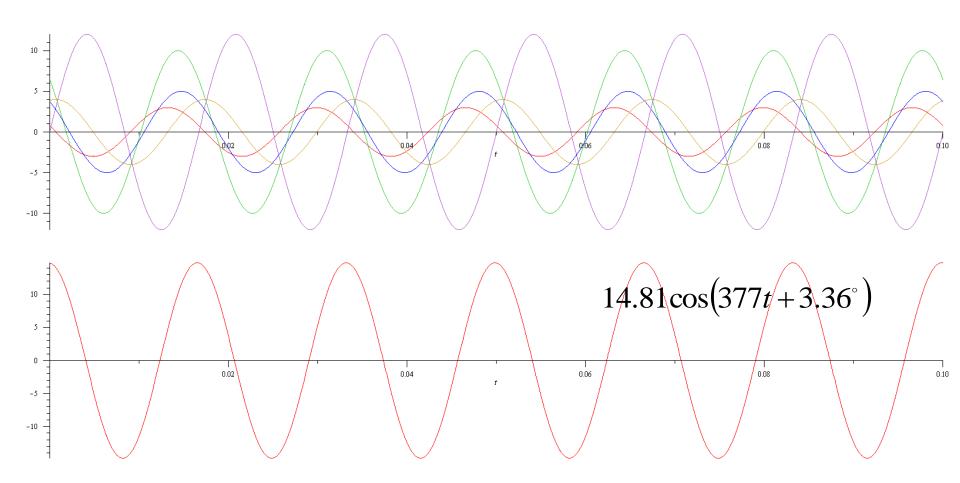
- Suppose we add a number of sinusoidal voltages with:
 - Equal frequencies
 - Different amplitudes (voltages) and phase shifts

• E.g.,
$$3\cos(377t + 75^{\circ}) + 10\cos(377t + 50^{\circ}) + 4\cos(377t - 15^{\circ}) + 5\cos(377t + 42^{\circ}) + 12\cos(377t - 90^{\circ})$$

 It may not be obvious, but the result will be another sinusoid of the form

$$A\cos(377t+\phi)$$

These are the five sinusoids and their sum



- We will now show that the sum of two sinusoids with
 - The same frequency, and
 - Possibly different amplitudes and phase shifts
 - is a sinusoid with the same frequency
- Our derivation will use trigonometric formula familiar to all high-school students
 - Later, we will see how exponentials with complex powers simplify this observation!

Consider the sum of two sinusoids:

$$3\cos(\omega t) + 9\sqrt{2}\cos(\omega t + 45^\circ)$$

Use the rule

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Thus we expand the terms

$$9\sqrt{2}\cos(\omega t + \frac{\pi}{2}) = 9\sqrt{2}\cos(\omega t)\cos(45^{\circ}) - 9\sqrt{2}\sin(\omega t)\sin(45^{\circ})$$
$$= 9\cos(\omega t) - 9\sin(\omega t)$$

Phasors

Example Derivation (The Hard Way)

Therefore

$$3\cos(\omega t) + 9\sqrt{2}\cos(\omega t + 45^{\circ}) = 12\cos(\omega t) - 9\sin(\omega t)$$

We wish to write this as

$$v\cos(\omega t + \phi) = v\cos(\omega t)\cos\phi - v\sin(\omega t)\sin\phi$$

We therefore deduce that

$$v\cos\phi = 12$$

$$v\sin\phi = 9$$

Given

$$v\cos\phi = 12$$
$$v\sin\phi = 9$$

Square both sides and add:

$$(v\cos\phi)^2 + (v\sin\phi)^2 = 12^2 + 9^2$$
$$v^2(\cos^2\phi + \sin^2\phi) = 225$$

• Because $\cos^2 \phi + \sin^2 \phi = 1$ it follows that

$$v = \sqrt{225} = 15$$

Again, given

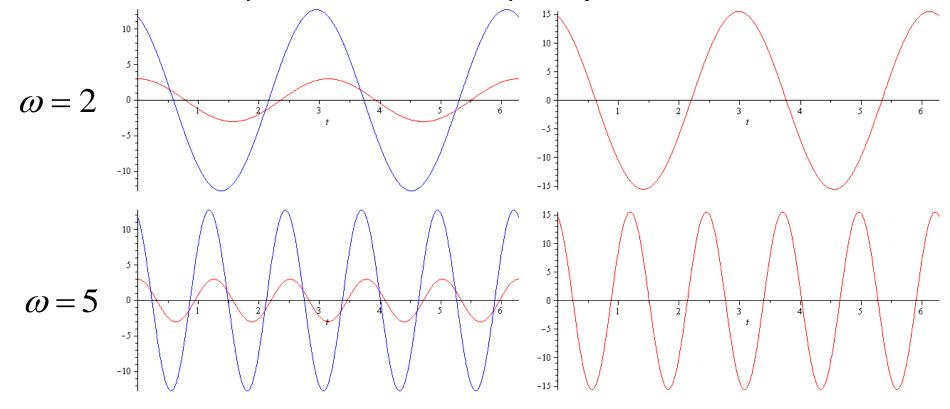
$$v\cos\phi = 12$$
$$v\sin\phi = 9$$

Take the ratio:

$$\frac{v\sin\phi}{v\cos\phi} = \tan\phi = \frac{9}{12} = 0.75$$

• Therefore $\phi \approx 36.87^{\circ}$

- It follows that $3\cos(\omega t) + 9\sqrt{2}\cos(\omega t + 45^{\circ}) = 15\cos(\omega t + 36.87^{\circ})$
- This is independent of the frequency:



Consider the sum of two sinusoids:

$$v_1 \cos(\omega t + \phi_1) + v_2 \cos(\omega t + \phi_2)$$

Using the rule

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

we can expand

$$v_{1} \cos(\omega t + \varphi_{1}) + v_{2} \cos(\omega t + \varphi_{2})$$

$$= v_{1} \cos(\omega t) \cos(\varphi_{1}) - v_{1} \sin(\omega t) \sin(\varphi_{1}) +$$

$$v_{2} \cos(\omega t) \cos(\varphi_{2}) - v_{2} \sin(\omega t) \sin(\varphi_{2})$$

$$= \cos(\omega t) (v_{1} \cos(\varphi_{1}) + v_{2} \cos(\varphi_{2})) -$$

$$\sin(\omega t) (v_{1} \sin(\varphi_{1}) + v_{2} \sin(\varphi_{2}))$$

Now, given

$$v_1 \cos(\omega t + \phi_1) + v_2 \cos(\omega t + \phi_2)$$

$$= \cos(\omega t)(v_1 \cos(\phi_1) + v_2 \cos(\phi_2)) - \sin(\omega t)(v_1 \sin(\phi_1) + v_2 \sin(\phi_2))$$

Suppose we can write this in the form

$$v\cos(\omega t + \phi)$$

• First, $v\cos(\omega t + \phi) = v\cos(\omega t)\cos(\phi) - v\sin(\omega t)\sin(\phi)$

and thus
$$v\cos(\phi) = v_1\cos(\phi_1) + v_2\cos(\phi_2)$$

 $v\sin(\phi) = v_1\sin(\phi_1) + v_2\sin(\phi_2)$

First, given

$$v\cos(\phi) = v_1\cos(\phi_1) + v_2\cos(\phi_2)$$
$$v\sin(\phi) = v_1\sin(\phi_1) + v_2\sin(\phi_2)$$

square both sides and add

$$v^{2} = v_{1}^{2} + 2v_{1}v_{2}(\cos\phi_{1}\cos\phi_{2} + \sin\phi_{1}\sin\phi_{2}) + v_{2}^{2}$$

$$\therefore v = \sqrt{v_1^2 + 2v_1v_2(\cos\phi_1\cos\phi_2 + \sin\phi_1\sin\phi_2) + v_2^2}$$

Similarly, given

$$v\cos(\phi) = v_1\cos(\phi_1) + v_2\cos(\phi_2)$$
$$v\sin(\phi) = v_1\sin(\phi_1) + v_2\sin(\phi_2)$$

take the ratio

$$\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{v_1 \sin \phi_1 + v_2 \sin \phi_2}{v_1 \cos \phi_1 + v_2 \cos \phi_2}$$

$$\therefore \phi = \tan^{-1} \left(\frac{v_1 \sin \phi_1 + v_2 \sin \phi_2}{v_1 \cos \phi_1 + v_2 \cos \phi_2} \right)$$

Adding n sinusoids must be done one pair at a time:

$$\underbrace{v_1 \cos(\omega t + \phi_1) + v_2 \cos(\omega t + \phi_2) + v_3 \cos(\omega t + \phi_3) + \cdots}_{v_{1,2} \cos(\omega t + \phi_{1,2})} + v_3 \cos(\omega t + \phi_3) + \cdots}_{v_{1,2,3} \cos(\omega t + \phi_{1,2,3})} + v_3 \cos(\omega t + \phi_3) + \cdots$$

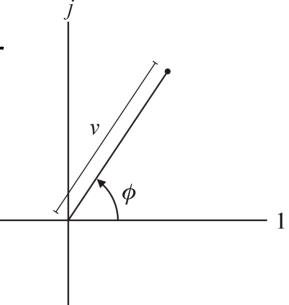
- Rather than dealing with trigonometric identities, there is a more useful representation: phasors
- Assuming ω is fixed, associate

$$v\cos(\omega t + \phi) \Leftrightarrow v\angle\phi$$

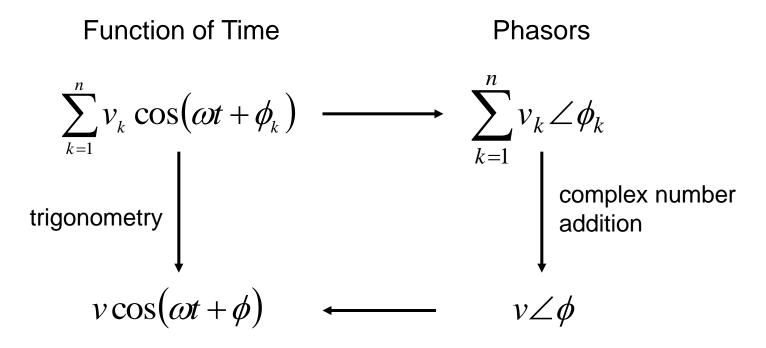
where $v \angle \phi$ is the complex number with magnitude v and argument ϕ

The value v∠ φ is a phasor and is read as

"vee phase fee"



The addition of sinusoids is equivalent to phasor addition



 We transform the problem of trigonometric addition into a simpler problem of complex addition

Recalling Euler's identity

$$v\angle\phi = ve^{j\phi} = v(\cos\phi + j\sin\phi)$$

Therefore

$$\sum_{k=1}^{n} v_k \angle \phi_k = \sum_{k=1}^{n} v_k \cos \phi_k + j \sum_{k=1}^{n} v_k \sin \phi_k$$

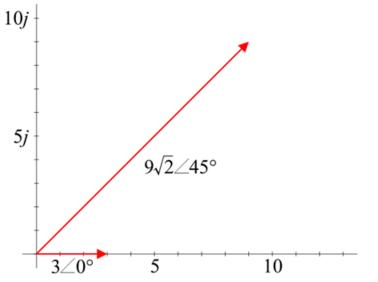
• Given our motivating example $3\cos(\omega t) + 9\sqrt{2}\cos(\omega t + 45^{\circ})$

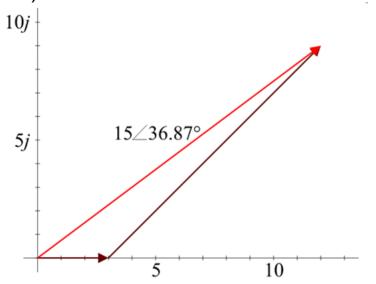
- Using phasors:
$$3\angle 0^{\circ} + 9\sqrt{2}\angle 45^{\circ} = 3 + 9 + 9j$$

= $12 + 9j$

$$=15\angle 36.87^{\circ}$$

- The result is $15\cos(\omega t + 36.87^{\circ})$





For example, given our first sum:

$$3\cos(377t+75^{\circ})+10\cos(377t+50^{\circ})+4\cos(377t-15^{\circ})+$$

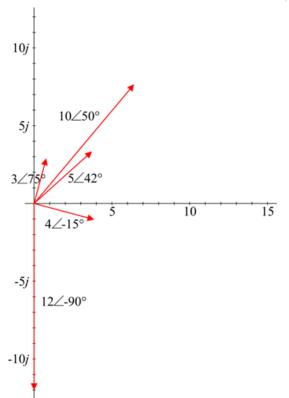
 $5\cos(377t+42^{\circ})+12\cos(377t-90^{\circ})$

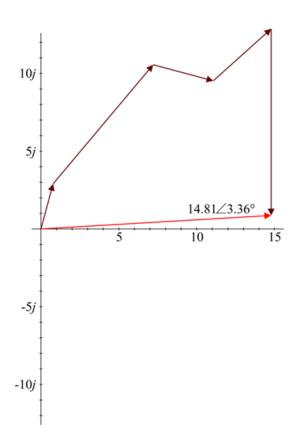
Using phasors

$$3\angle 75^{\circ} + 10\angle 50^{\circ} + 4\angle (-15^{\circ}) + 5\angle 42^{\circ} + 12\angle (-90^{\circ})$$

= $3e^{75^{\circ}j} + 10e^{50^{\circ}j} + 4e^{-15^{\circ}j} + 5e^{42^{\circ}j} + 3e^{-90^{\circ}j}$
= $14.78 + 0.87j$
= $14.81\angle 3.36^{\circ}$
we get the sum $14.81\cos(377t + 3.36^{\circ})$

- These graphs show:
 - The individual phasors
 - The sum of the phasors

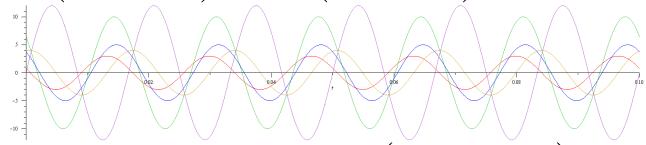




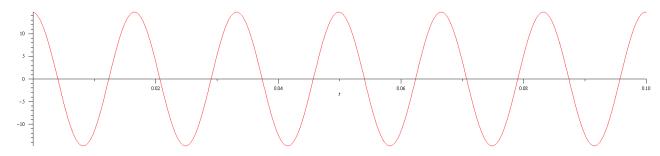
A plot of the sum

$$3\cos(377t+75^{\circ})+10\cos(377t+50^{\circ})+4\cos(377t-15^{\circ})+$$

 $5\cos(377t+42^{\circ})+12\cos(377t-90^{\circ})$



is identical to a plot of $14.81\cos(377t + 3.36^{\circ})$



Phasors Why Phasors Work

To understand recall that

$$ve^{j(\omega t + \phi)} = v\cos(\omega t + \phi) + jv\sin(\omega t + \phi)$$

- Therefore $v\cos(\omega t + \phi) = \Re(ve^{j(\omega t + \phi)})$
- Plot the complex exponential

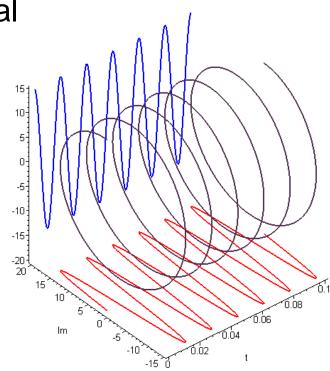
$$14.81e^{j(377t+3.36^{\circ})}$$

The real part:

$$14.81\cos(377t+3.36^{\circ})$$

The imaginary part:

$$14.81\sin(377t + 3.36^{\circ})$$



Phasors Why Phasors Work

Note that

$$v_{1}e^{j(\omega t + \phi_{1})} + v_{2}e^{j(\omega t + \phi_{2})} = v_{1}e^{j\omega t}e^{j\phi_{1}} + v_{2}e^{j\omega t}e^{j\phi_{2}}$$

$$= (v_{1}e^{j\phi_{1}} + v_{2}e^{j\phi_{2}})e^{j\omega t}$$

$$= (v_{1}\angle\phi_{1} + v_{2}\angle\phi_{2})e^{j\omega t}$$

and because $\Re\{w+z\} = \Re\{w\} + \Re\{z\}$, it follows

$$\begin{aligned} v_{1} \cos(\omega t + \phi_{1}) + v_{2} \cos(\omega t + \phi_{2}) &= \Re \{ v_{1} e^{j(\omega t + \phi_{1})} \} + \Re \{ v_{2} e^{j(\omega t + \phi_{2})} \} \\ &= \Re \{ v_{1} e^{j\omega t} e^{j\phi_{1}} \} + \Re \{ v_{2} e^{j\omega t} e^{j\phi_{2}} \} \\ &= \Re \{ v_{1} e^{j\omega t} e^{j\phi_{1}} + v_{2} e^{j\omega t} e^{j\phi_{2}} \} \\ &= \Re \{ (v_{1} \angle \phi_{1} + v_{2} \angle \phi_{2}) e^{j\omega t} \} \end{aligned}$$

Phasors Derivation (The Easy Way)

- Previously, we used trigonometry to show that the sum of two sinusoids with the same frequency must continue to have the same frequency
- Using complex exponentials, this becomes obvious

$$\Re\{v_{1}e^{j(\omega t+\phi_{1})}\} + \Re\{v_{2}e^{j(\omega t+\phi_{2})}\} = \Re\{(v_{1}\angle\phi_{1} + v_{2}\angle\phi_{2})e^{j(\omega t+\phi_{2})}\}$$

Phasors Phasor Multiplication

- Multiplication may be performed directly on phasors:
 - The product of two phasors $r_1 \angle \phi_1$ and $r_2 \angle \phi_2$ is the phasor

$$(r_1r_2)\angle(\phi_1+\phi_2)$$

- For example,

$$(5\angle 45^{\circ})\cdot (2\angle -60^{\circ})=10\angle -15^{\circ}$$

This generalizes to products of *n* phasors:

$$(r_1 \angle \phi_1) \cdots (r_n \angle \phi_n) = (r_1 \cdots r_n) \angle (\phi_1 + \cdots + \phi_n)$$

Phasors Phasor Multiplication

- Calculating the inverse is also straight-forward:
 - The inverse of the phasor $r \angle \phi$ is the phasor

$$\left(\frac{1}{r}\right) \angle \left(-\phi\right)$$

- For example,

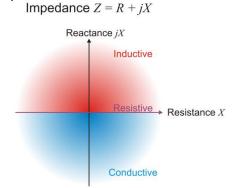
$$(5\angle 45^{\circ})^{-1} = 0.2\angle -45^{\circ}$$

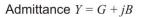
– Using multiplication, we note the product is 1:

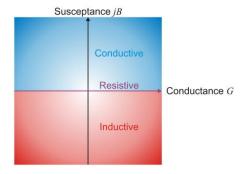
$$(r \angle \phi) \cdot \left(\left(\frac{1}{r} \right) \angle (-\phi) \right) = \left(r \frac{1}{r} \right) \angle (\phi + (-\phi)) = 1 \angle 0^{\circ}$$

- When dealing with alternating currents (AC):
 - The generalization of the resistance R is the complex impedance Z = R + jX
 - The generalization of the conductance G is the complex admittance Y = G + jB
- Ohm's law easily generalizes:

$$V = IZ$$







With AC, the linear circuit elements behave like phasors

Inductor with inductance *L*

$$Z = j\omega L = \omega L \angle 90^{\circ}$$

Impedance Z = R + jX

Inductive

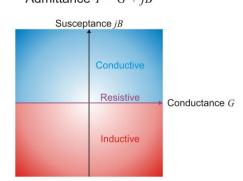
Resistive Resistance XConductive

Resistor with resistance R

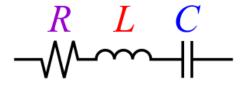
$$Z = R \angle 0^{\circ}$$

Capacitor with capacitance
$$C$$
 $Z = \frac{1}{j\omega C} = \frac{1}{\omega C} \angle -90^{\circ}$

- Note that inductance and capacitance are frequency dependant
- We can use this to determine the voltage across an linear circuit with AC: V = IZ



Consider three circuit elements in series:



with

$$R = 2 \Omega$$

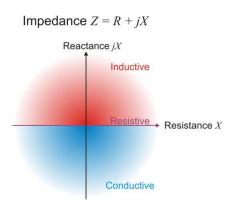
 $L = 50 \text{ mH}$
 $C = 750 \text{ mF}$

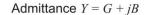
The total impedance is:

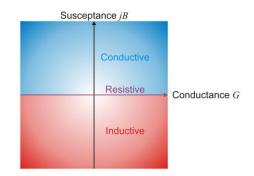
$$Z = 2\angle 0^{\circ} + \omega 0.050\angle 90^{\circ} + \frac{1}{0.750\omega}\angle -90^{\circ}$$

• E.g., if $\omega = 1$, it follows that

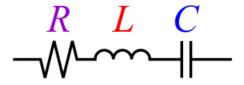
$$Z = 2.376 \angle -32.69^{\circ}$$







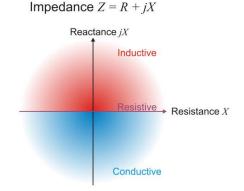
• If the current across this circuit is $I = 10 \cos(t) A$,

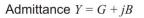


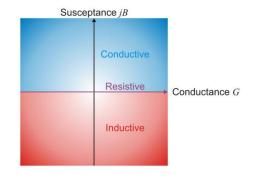
we may compute the voltage:

$$V = IZ$$
= $(10\angle 0^{\circ}) \times (2.376\angle -32.69^{\circ})$
= $23.76\angle -32.69^{\circ}$

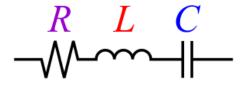
or
$$V = 23.76 \cos(t - 32.69^{\circ}) \text{ V}$$







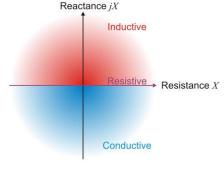
• If the current across this circuit is $I = 10 \cos(377t) \text{ A}$,



we need to recalculate the impedance:

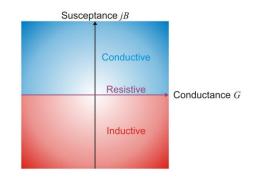
$$Z = 2\angle 0^{\circ} + 377 \cdot 0.050 \angle 90^{\circ} + \frac{1}{0.750 \cdot 377} \angle -90^{\circ}$$
$$= 18.95 \angle 83.94^{\circ}$$

• Now V = IZ= $(10\angle 0^{\circ}) \times (18.95\angle 83.94^{\circ})$ = $189.5\angle 83.94^{\circ}$



Admittance Y = G + jB

Impedance Z = R + iX



or $V = 189.5 \cos(377t + 83.94^{\circ}) \text{ V}$

Consider three circuit elements in parallel with

$$R = 2 \Omega$$

 $L = 50 \text{ mH}$
 $C = 750 \text{ mF}$

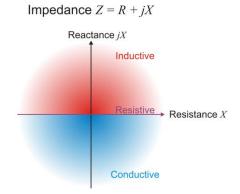
• The total admittance is:

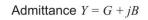
$$Y = \frac{1}{Z} = \frac{1}{2\angle 0^{\circ}} + \frac{1}{\omega 0.050\angle 90^{\circ}} + \frac{1}{\frac{\angle -90^{\circ}}{\omega 0.750}}$$

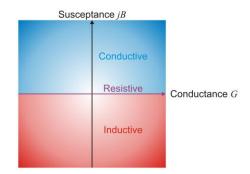
• E.g., if $\omega = 1$, it follows that

$$Y = 0.5\angle 0^{\circ} + 20\angle -90^{\circ} + 0.75\angle 90^{\circ}$$
$$= 18.95\angle -83.94^{\circ}$$

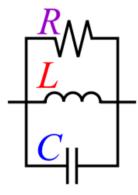
$$\therefore Z = 0.05276 \angle 83.94^{\circ}$$

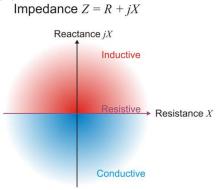






• If the current across this circuit is $I = 10 \cos(t)$ A

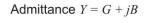


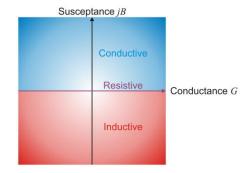


we may compute the voltage:

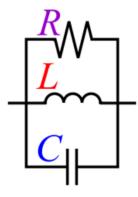
$$V = IZ$$
= $(10\angle 0^{\circ}) \times (0.05276\angle 83.94^{\circ})$
= $0.5276\angle 83.94^{\circ}$

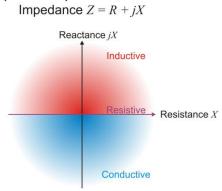
or
$$V = 0.5276 \cos(t + 83.94^{\circ}) \text{ V}$$





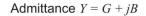
• If the current across this circuit is $I = 10 \cos(377t)$ A

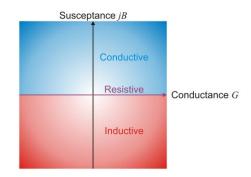




we need to recalculate the impedance:

$$Y = \frac{1}{Z} = \frac{1}{2\angle 0^{\circ}} + \frac{1}{377 \cdot 0.050\angle 90^{\circ}} + \frac{1}{\frac{1}{377 \cdot 0.750}\angle -90^{\circ}}$$
$$= 282.7\angle 89.90^{\circ}$$
$$or Z = 0.003537\angle -89.90^{\circ}$$





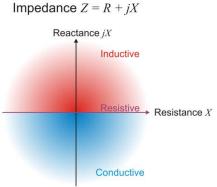
• Thus, with the current $I = 10 \cos(377t)$ A and

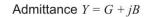
impedance $Z = 0.003537 \angle -89.90^{\circ} R$ we may now calculate

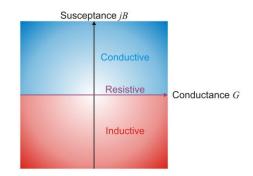
$$V = IZ$$
= $(10\angle 0^{\circ}) \times (0.003537\angle -89.90^{\circ})$
= $0.03537\angle -89.90^{\circ}$

or
$$V = 0.03537 \cos(377t - 89.90^{\circ}) \text{ V}$$

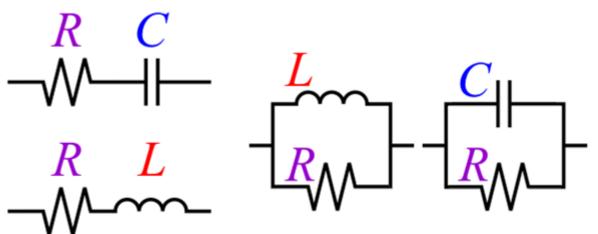
 This should be intuitive, as the capacitor acts as essentially a short-circuit for high frequency AC

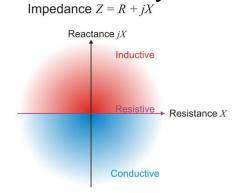




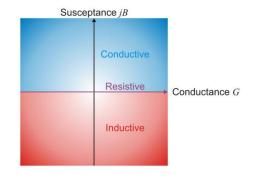


- A consequence of what we have seen here is that any linear circuit with alternating current may be replaced with
 - A single resistor, and
 - A single complex impedance
 - · A capacitor or an inductor





Admittance Y = G + jB



Phasors Final Observations

- These techniques do not work if the frequencies differ
- The choice of 377 in the examples is deliberate:
 - North American power is supplied at 60 Hz:

$$2\pi 60 \approx 376.99111843$$

- Relative error: 0.0023%
- European power is supplied at 50 Hz:

$$2\pi 50 = 100\pi \approx 314.159265358$$

Phasors Final Observations

 Mathematicians may note the peculiar mix of radians and degrees in the formula

$$10\cos(377t+50^{\circ})$$

Justification:

- The phase shifts are 180° or less (π radians or less)
- Which shifts are easier to visualize?

120°	$2.094 \text{ rad or } 2\pi/3 \text{ rad}$
60°	1.047 rad or $\pi/3$ rad
45°	$0.785 \text{ rad or } \pi/4 \text{ rad}$
30°	$0.524 \text{ rad or } \pi/6 \text{ rad}$

- Is it obvious that 2.094 rad and 0.524 rad are orthogonal?
- Three-phase power requires the third roots of unity:
 - These cannot be written easily with radians (even using π)

Phasors Summary

- In this topic, we will look at
 - Sum of sinusoidal functions
 - The trigonometry is exceptionally tedious
 - The phasor representation $v\cos(\omega t + \phi) \Leftrightarrow v\angle\phi$
 - The parallel between phasor addition and trigonometric summations
 - Phasor multiplication and inverses
 - Use of phasors with linear circuit elements

Phasors Acknowledgments

 I would like to thank Prof. David Nairn for assistance in answering questions and Hua Qiang Cheng for pointing out errors in a previous version of these slides

Usage Notes

- These slides are made publicly available on the web for anyone to use
- If you choose to use them, or a part thereof, for a course at another institution, I ask only three things:
 - that you inform me that you are using the slides,
 - that you acknowledge my work, and
 - that you alert me of any mistakes which I made or changes which you make, and allow me the option of incorporating such changes (with an acknowledgment) in my set of slides

Sincerely,
Douglas Wilhelm Harder, MMath
dwharder@alumni.uwaterloo.ca