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Phasors

Outline

• In this topic, we will look at

– The necessary background

– Sums of sinusoidal functions

– The trigonometry involved

– Phasor representation of sinusoids

– Phasor addition

– Why phasors work

– Phasor multiplication and inverses

– Phasors for circuits



Phasors

Background

• Consider any periodic sinusoid with

– Period T =    1/f =   2p/w

– Frequency f =    1/T =   w/2p

– Angular frequency w =    2pf =   2p/T

• It is possible to write such a sinusoid as

v cos(wt + f)

where

– v is the amplitude

– f is the phase shift

f v



Phasors

Background

• As v cos(wt + f + 2p) = v cos(wt + f), restrict –p < f ≤ p

• Engineers throw an interesting twist into this formulation

– The frequency term wt has units of radians

– The phase shift f has units of degrees: –180° < f ≤ 180°

• For example,

V cos(377t + 45°) 

V cos(377t – 90°) 



Phasors

Background

• A positive phase shift causes the function to lead of f

• For example, –sin(t) = cos(t + 90°) leads cos(t) by 90°

• Compare cos(377t) and cos(377t + 45°)

Blue peaks first

- Blue is leading



Phasors

Background

• A negative phase shift causes the function to lag by f

• For example, sin(t) = cos(t – 90°) lags cos(t) by 90°

• Compare cos(377t) and cos(377t – 90°)

Red peaks first

- Blue lags behind



Phasors

Background

• If the phase shift is 180°, the functions are out of phase

• E.g., –cos(t) = cos(t – 180°) and cos(t) are out of phase

• Compare cos(377t) and cos(377t – 180°)
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Background

• Suppose we add a number of sinusoidal voltages with:

– Equal frequencies

– Different amplitudes (voltages) and phase shifts

• E.g.,

• It may not be obvious, but the result will be another 

sinusoid of the form

     

   



90377cos1242377cos5

15377cos450377cos1075377cos3

tt

ttt

 ftA 377cos



Phasors

Background

• These are the five sinusoids and their sum

 36.3377cos81.14 t
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Derivations (The Hard Way)

• We will now show that the sum of two sinusoids with

– The same frequency, and

– Possibly different amplitudes and phase shifts

is a sinusoid with the same frequency

• Our derivation will use trigonometric formula familiar to 

all high-school students

– Later, we will see how exponentials with complex powers 

simplify this observation!



Phasors

Example Derivation (The Hard Way)

• Consider the sum of two sinusoids:

• Use the rule

• Thus we expand the terms

   45cos29cos3  tt ww

  bababa sinsincoscoscos 

         
   tt

ttt

ww

www p

sin9cos9

45sinsin2945coscos29cos29
2



 
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Example Derivation (The Hard Way)

• Therefore

• We wish to write this as

• We therefore deduce that

       tttt wwww sin9cos1245cos29cos3  

      fwfwfw sinsincoscoscos tvtvtv 

9sin

12cos





f

f

v

v
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Example Derivation (The Hard Way)

• Given

• Square both sides and add:

• Because                               it follows that

9sin

12cos





f

f

v

v

   

  225sincos

912sincos
222

2222





ff

ff

v

vv

1sincos 22  ff

15225 v
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Example Derivation (The Hard Way)

• Again, given

• Take the ratio:

• Therefore f ≈ 36.87°

9sin

12cos





f

f

v

v

75.0
12

9
tan

cos

sin
 f

f

f

v

v



• It follows that

• This is independent of the frequency:

Phasors

Example Derivation (The Hard Way)

2w

5w

      87.6cos1545cos29cos3 3 ttt www
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Full Derivation (The Hard Way) 

• Consider the sum of two sinusoids:

• Using the rule

we can expand

   
2211

coscos fwfw  tvtv

  bababa sinsincoscoscos 

   

       

       

      

      

1 1 2 2

1 1 1 1

2 2 2 2

1 1 2 2

1 1 2 2

cos cos

cos cos sin sin

cos cos sin sin

cos cos cos

sin sin sin

v t v t

v t v t

v t v t

t v v

t v v

w  w 

w  w 

w  w 

w  

w  

  

  



  


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Full Derivation (The Hard Way)

• Now, given

Suppose we can write this in the form

• First,

and thus

 fw tvcos

      fwfwfw sinsincoscoscos tvtvtv 

     

     
2211

2211

sinsinsin

coscoscos

fff

fff

vvv

vvv





   

             
22112211

2211

sinsinsincoscoscos

coscos

ffwffw

fwfw

vvtvvt

tvtv




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Full Derivation (The Hard Way)

• First, given

square both sides and add

     

     2211

2211

sinsinsin

coscoscos

fff

fff

vvv

vvv





  2
2212121

2
1

2 sinsincoscos2 vvvvv  ffff

  2
2212121

2
1 sinsincoscos2 vvvvv  ffff
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Full Derivation (The Hard Way)

• Similarly, given

take the ratio

     

     2211

2211

sinsinsin

coscoscos

fff

fff

vvv

vvv





2211

2211

coscos

sinsin

cos

sin
tan

ff

ff

f

f
f

vv

vv


















 

2211

22111

coscos

sinsin
tan

ff

ff
f

vv

vv
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Full Derivation (The Hard Way)

• Adding n sinusoids must be done one pair at a time:

         
332211

coscoscos fwfwfw tvtvtv

    
  


332,12,1

coscos fwfw tvtv

  
3,2,13,2,1

cos fwtv
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Using Phasors

• Rather than dealing with trigonometric identities, there is 

a more useful representation:  phasors

• Assuming w is fixed, associate

where          is the complex number

with magnitude v and argument f

• The value         is a phasor and

is read as

“vee phase fee” 

  ffw  vtvcos

fv

fv
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Using Phasors

• The addition of sinusoids is equivalent to phasor addition

• We transform the problem of trigonometric addition

into a simpler problem of complex addition

 fw tvcos fv

 



n

k

kk
tv

1

cos fw 




n

k

kkv

1

f

trigonometry
complex number

addition

Function of Time Phasors
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Using Phasors

• Recalling Euler’s identity

• Therefore






n

k

kk

n

k

kk

n

k

kk vjvv

111

sincos fff

 fff f sincos jvvev j 
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Using Phasors

• Given our motivating example

– Using phasors:

– The result is

   45cos29cos3  tt ww





87.3615

912

993452903







j

j

 87.36cos15 tw
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Using Phasors

• For example, given our first sum:

• Using phasors

we get the sum

   







36.381.14

87.078.14

354103

90124251545010753

9042155075











j

eeeee jjjjj

 36.3377cos81.14 t

     

   



90377cos1242377cos5

15377cos450377cos1075377cos3

tt

ttt
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Using Phasors

• These graphs show:

– The individual phasors

– The sum of the phasors
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Using Phasors

• A plot of the sum

is identical to a plot of  36.3377cos81.14 t

     

   



90377cos1242377cos5

15377cos450377cos1075377cos3

tt

ttt



• To understand recall that

• Therefore

• Plot the complex exponential

The real part:

14.81 cos(377t + 3.36°)

The imaginary part:

14.81sin(377t + 3.36°) 

Phasors

Why Phasors Work

    fwfw  tjvetvcos

     fwfwfw  tjvtvve tj sincos

 36.337781.14 tje



• Note that

and because                                  , it follows

Phasors

Why Phasors Work

   

 
  tj

tjjj

jtjjtjtjtj

evv

eevev

eeveevevev

w

wff

fwfwfwfw

ff 2211

21

2121

21

2121








         
   
 
  tj

jtjjtj

jtjjtj

tjtj

evv

eeveev

eeveev

evevtvtv

w

fwfw

fwfw

fwfw

ff

fwfw

2211

21

21

212211

21

21

21coscos










     zwzw 



• Previously, we used trigonometry to show that the sum 

of two sinusoids with the same frequency must continue 

to have the same frequency

• Using complex exponentials, this becomes obvious

Phasors

Derivation (The Easy Way)

        tjtjtj
evvevev wfwfw ff

221121

21 

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Phasor Multiplication

• Multiplication may be performed directly on phasors:

– The product of two phasors             and             is the phasor

– For example, 

– This generalizes to products of n phasors:

11
fr

22
fr

       
nnnn

rrrr ffff 
1111

     1510602455 

   
2121

ff rr
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Phasor Multiplication

• Calculating the inverse is also straight-forward:

– The inverse of the phasor             is the phasor

– For example, 

– Using multiplication, we note the product is 1:

fr

       01
11



























 ffff

r
r

r
r

   452.0455
1




 f








r

1
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Linear Circuit Elements

• When dealing with alternating currents (AC):

– The generalization of the resistance R is 

the complex impedance Z = R + jX

– The generalization of the conductance G is

the complex admittance Y = G + jB

• Ohm’s law easily generalizes:

V = IZ
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Linear Circuit Elements

• With AC, the linear circuit elements behave like phasors

Inductor with inductance L

Resistor with resistance R

Capacitor with capacitance C

– Note that inductance and capacitance

are frequency dependant

• We can use this to determine the voltage

across an linear circuit with AC:  V = IZ

90Z j L Lw w  

1 1
90Z

j C Cw w
   

0 RZ
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Linear Circuit Elements

• Consider three circuit elements in series:

with

R =     2 W

L =    50 mH

C = 750 mF

• The total impedance is:

• E.g., if         , it follows that

1
2 0 0.050 90 90

0.750
Z w

w
      

2.376 32.69Z  

1w 
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Linear Circuit Elements

• If the current across this circuit is I = 10 cos(t) A, 

we may compute the voltage:

or V = 23.76 cos(t – 32.69°) V

   10 0 2.376 32.69

23.76 32.69

V IZ

    

  
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Linear Circuit Elements

• If the current across this circuit is I = 10 cos(377t) A,

we need to recalculate the impedance:

• Now

or V = 189.5 cos(377t + 83.94°) V

   10 0 18.95 83.94

189.5 83.94

V IZ

   

 

1
0.750 377

2 0 377 0.050 90 90

18.95 83.94

Z


       

 
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Linear Circuit Elements

• Consider three circuit elements in parallel with

R =     2 W

L =    50 mH

C = 750 mF

• The total admittance is:

• E.g., if         , it follows that

90
0.750

1 1 1 1

2 0 0.050 90
Y

Z ww 
   

 

0 05276 83.94Z .  

0.5 0 20 90 0.75 90

18.95 83.94

Y       

  

1w 
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Linear Circuit Elements

• If the current across this circuit is I = 10 cos(t) A

we may compute the voltage:

or V = 0.5276 cos(t + 83.94°) V

   10 0 0 05276 83.94

0 5276 83.94

V IZ

.

.



   

 
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Linear Circuit Elements

• If the current across this circuit is I = 10 cos(377t) A

we need to recalculate the impedance:

or 

1
377 0.750

1 1 1 1

2 0 377 0.050 90 90

282.7 89.90

Y
Z



   
    

 

0.003537 89.90Z  
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Linear Circuit Elements

• Thus, with the current  I = 10 cos(377t) A and

impedance 

we may now calculate

or V = 0.03537 cos(377t – 89.90°) V

• This should be intuitive, as the capacitor

acts as essentially a short-circuit for high

frequency AC

   10 0 0.003537 89.90

0.03537 89.90

V IZ

    

  

0.003537 89.90Z  
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Linear Circuit Elements

• A consequence of what we have seen here is that any 

linear circuit with alternating current

may be replaced with

– A single resistor, and

– A single complex impedance

• A capacitor or an inductor

2 2 2 2 2 2

2 2 2 2
1 1

2 2

,
R X R X

R X
X R

w w
w

w

 
 
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Final Observations

• These techniques do not work if the frequencies differ

• The choice of 377 in the examples is deliberate:

– North American power is supplied at 60 Hz:

2p 60 ≈ 376.99111843

– Relative error:  0.0023%

– European power is supplied at 50 Hz:

2p 50 = 100p ≈ 314.159265358
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Final Observations

• Mathematicians may note the peculiar mix of radians 

and degrees in the formula

Justification:

– The phase shifts are 180° or less (p radians or less)

– Which shifts are easier to visualize?

120° 2.094 rad or 2p/3 rad

60° 1.047 rad or p/3 rad

45° 0.785 rad or p/4 rad

30° 0.524 rad or p/6 rad

– Is it obvious that 2.094 rad and 0.524 rad are orthogonal?

– Three-phase power requires the third roots of unity:

• These cannot be written easily with radians (even using p)

 50377cos10 t
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Summary

• In this topic, we will look at

– Sum of sinusoidal functions

– The trigonometry is exceptionally tedious

– The phasor representation

– The parallel between phasor addition and trigonometric 

summations

– Phasor multiplication and inverses

– Use of phasors with linear circuit elements

  ffw  vtvcos
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